فایلوو

سیستم یکپارچه همکاری در فروش فایل

فایلوو

سیستم یکپارچه همکاری در فروش فایل

پایان نامه بررسی پارامترهای هندسی مهاربند زانویی در 150 صفحه ورد قابل ویرایش

پژوهش بررسی پارامترهای هندسی مهاربند زانویی
پژوهش بررسی پارامترهای هندسی مهاربند زانویی - پایان نامه بررسی پارامترهای هندسی مهاربند زانویی در 150 صفحه ورد قابل ویرایش



پژوهش بررسی پارامترهای هندسی مهاربند زانویی در 150 صفحه ورد قابل ویرایش
فهرست مطالب فصل اول: 1-1- مقدمه................................................................................................................................................................... 2 1-2- شکل پذیری سازه ها ...................................................................................................................................... 4 1-3- مفصل و لنگر پلاستیک ................................................................................................................................. 5 1-4- منحنی هیستر زیس و رفتار چرخه ای سازه ها .................................................................................... 6 1-5- مقایسه رفتار خطی و غیر خطی در سیستمهای سازه ای ................................................................... 7 1-6- ضریب شکل پذیری ........................................................................................................................................ 8 1-7- ضریب کاهش نیروی زلزله در اثر شکل پذیری سازه ............................................................................ 9 1-8- ضریب اضافه مقاومت .................................................................................................................................. 10 1-9- ضریب رفتار ساختمان ................................................................................................................................ 10 1-10- ضریب تبدیل جابجایی خطی به غیر خطی ...................................................................................... 12 1-11- سختی .......................................................................................................................................................... 12 1-12- مقاومت ......................................................................................................................................................... 12 1-13- جمع بندی پارامترهای کنترل کننده ................................................................................................. 12 فصل دوم : 2-1-1- قاب فضایی خمشی ................................................................................................................................ 14 2-1-2- تعریف سیستم قاب صلب خمشی .................................................................................................... 14 2-1-3- رفتار قابهای خمشی در برابر بار جانبی ............................................................................................ 15 2-1-4- رابطه بار – تغییر مکان در قابهای خمشی ...................................................................................... 16 2-1-5- رفتار چرخه ای قابها .............................................................................................................................. 16 2-1-6- شکل پذیری قابهای خمشی ................................................................................................................ 16 2-1-7- مفصل پلاستیک در قابهای خمشی ................................................................................................... 17 2-1-8- مشخص کردن لنگر پلاستیک محتمل در مفصل پلاستیک ...................................................... 18 2-1-9- کنترل ضابطه تیر ضعیف – ستون قوی ................................................ 18 2-1-10- چشمه اتصال ........................................................................................................................................ 19 2-1-11- اثرات چشمه اتصال بر رفتار قاب خمشی .................................................................................... 19 2-1-12- طراحی چشمه اتصال ......................................................................................................................... 19 2-1-13- اثرات نامعینی ....................................................................................................................................... 20 2-2-1- سیستم مهاربندی همگرا ..................................................................................................................... 20 2-2-2- پاسخ رفت و برگشتی مهاربندهای فولادی ...................................................................................... 21 2-2-3- ضریب کاهش مقاومت فشاری مهاربند ............................................................................................. 23 2-2-4- رفتار لرزه ای قابهای فولادی با مهاربندی ضربدری ...................................................................... 23 2-2-5- رفتار کششی تنها ................................................................................................................................... 24 2-2-6- رفتار کششی – فشاری ......................................................................................................................... 24 2-2-7- تاثیر ضریب لاغری در رفتار قاب با مهاربندی همگرا ................................................................... 24 2-2-8- سیستم دوگانه قاب خمشی و مهاربندی همگرا ............................................................................ 25 2-3-1- سیستم مهاربندی واگرا ........................................................................................................................ 25 2-3-2- سختی و مقاومت قاب ........................................................................................................................... 26 2-3-3- زمان تناوب قاب ...................................................................................................................................... 27 2-3-4- مکانیزم جذب انرژی .............................................................................................................................. 27 2-3-5- نیروها در تیرها و تیر پیوند ................................................................................................................. 29 2-3-6- تعیین مرز پیوندهای برشی و خمشی .............................................................................................. 30 2-3-7- تسلیم و مکانیزم خرابی در تیر پیوند ............................................................................................... 31 2-3-8- اثر کمانش جان تیر پیوند .................................................................................................................... 31 2-3-9- مقاومت نهایی تیر پیوند ........................................................................................................................ 32 2-4-1-سیستم جدید قاب با مهاربندی زانویی .............................................................................................. 32 2-4-2- اتصالات مهاربند – زانویی .................................................................................................................... 35 2-4-3- سختی جانبی الاستیک قابهای KBF.............................................................................................. 35 2-4-4- اثر مشخصات اعضاء بر سختی جانبی ارتجاعی سیستمهای KBF.......................................... 37 2-4-5- رفتار غیر خطی مهاربند زانویی تحت بار جانبی............................................................................ 37 فصل سوم : 3-1- مقدمه .............................................................................................................................................................. 41 3-2- مشخصات کلی ساختمان ........................................................................................................................... 41 3-3- بارگذاری جانبی ............................................................................................................................................ 44 3-3-1- بارگذاری ثقلی ......................................................................................................................................... 44 3-3-2- بارگذاری جانبی ...................................................................................................................................... 45 3-4- تحلیل قابها....................................................................................................................................................... 46 3-5- طراحی قابها ................................................................................................................................................... 48 3-5-1- کمانش موضعی اجزاء جدار نازک ..................................................................................................... 48 3-5-2- کمانش جانبی در تیرها و کمانش جانبی – پیچشی در ستونها ............................................... 50 3-6- طراحی قابهای TKBF.............................................................................................................................. 53 3-7- طراحی اعضای زانویی ................................................................................................................................. 54 3-8- طراحی تیرها و ستونها ............................................................................................................................... 55 3-9- طراحی اعضای مهاربندی ........................................................................................................................... 55 3-10- طراحی قابهای EBF................................................................................................................................ 55 3-11- طراحی قابهای CBF............................................................................................................................... 55 3-12- نتایج طراحی مدلها ................................................................................................................................... 56 3-12-1- سیستم TKBF + MRF .......................................................................................................... 56 3-12-2-سیستم EBF + MRF.................................................................................................................... 57 3-12-3- سیستم CBF + MRF.................................................................................................................. 57 3-13- کنترل مقاطع انتخابی با قسمت دوم آئین نامه AISC................................................................. 58 3-13-1- کنترل کمانش موضعی ...................................................................................................................... 58 3-13-2- کنترل پایداری جانبی اعضای زانویی ............................................................................................. 58 3-14- بررسی رفتار استاتیکی خطی سیستمهای KBF و EBF و CBF و مقایسه آنها با یکدیگر 58 3-14-1- مقایسه تغییر مکان جانبی مدلها...................................................................................................... 59 3-14-2-مقایسه پربود طبیعی مدلها.................................................................................................................. 59 3-14-3- بررسی نیروپذیری المانهای زانویی در قابهای TKBF............................................................. 60 3-14-4- بررسی نیروهای داخلی ایجاد شده در تیر کف............................................................................ 61 3-14-5- بررسی نیروی فشاری در اعضای قطری ........................................................................................ 63 3-15- بررسی اثر پارامترهای هندسی قاب روی سختی سیستمهای KBF........................................ 63 3-15-1- بررسی اثر و بر سختی ارتجاعی سیستمهای TKBF............................................. 64 3-16- تحلیل دینامیکی تاریخچه زمانی ........................................................................................................... 81 3-16-1-معادلات تعادل دینامیکی .................................................................................................................... 81 3-16-2- مشخصات دینامیکی قابهای مورد مطالعه ..................................................................................... 82 3-16-3- شتاب نگاشتهای اعمالی .................................................................................................................... 83 3-16-4-نتایج تحلیل دینامیکی تاریخچه زمانی ............................................................................................ 92 فصل چهار م : 4-1- نتایج ................................................................................................................................................................. 96 4-2- ضوابط طراحی زانویی ................................................................................................................................. 97 4-3- پیشنهادات ...................................................................................................................................................... 99 پیوست 1 ................................................................................................................................................................. 100 پیوست 2................................................................................................................................................................... 107 پیوست 3................................................................................................................................................................... 111 مراجع ........................................................................................................................................................................ 118 فهرست شکلها فصل اول : شکل 1-1- قابهای مقاوم خمشی ......................................................................................................................... 2 شکل 1-2- قاب با مهاربند هم محور .................................................................................................................... 2 شکل 1-3- نمونه هایی از قابهای خارج از مرکز ................................................................................................ 3 شکل 1-4- قاب با مهاربند زانویی .......................................................................................................................... 3 شکل 1-5- منحنی ایده آل و واقعی نیرو – تغییر مکان یک سیستم ........................................................ 4 شکل1-6- تیر دو سر مفصل تحت اثر بار افزایشی ............................................................................................ 5 شکل 1-7- منحنی نیرو – جابجایی وسط دهانه تیر ....................................................................................... 5 شکل 1-8- نمودار تغییرات کرنش در یک مقطع تحت اثر خمش .............................................................. 6 شکل 1-9- منحنی واقعی کرنش – کرنش فولاد ............................................................................................. 6 شکل 1-10- منحنی هیسترزیس ایده آل و دو منحنی دارای زوال ........................................................... 6 شکل 1-11- رفتار سازه ها تحت بار دوره ای .................................................................................................... 7 شکل 1-12- مقایسه رفتار خطی و غیر خطی ایده آل سیستمهای مقاوم ساختمانی ........................... 8 شکل1-13- طیف بازتاب ارتجاعی و غیر ارتجاعی با شکل پذیری ثابت ..................................................... 9 شکل 1-14- تعریف پارامترهای غیر خطی ..................................................................................................... 10 فصل دوم : شکل 2-1- تغییر شکل قاب صلب خمش ....................................................................................................... 14 شکل 2-2- تغییر شکل قاب خمشی ................................................................................................................. 15 شکل 2-3- روابط بار – تغییر مکان برای قاب خمشی تحت بار ثقلی ..................................................... 16 شکل 2-4- روابط بار – تغییر مکان قابهای خمشی پرتال .......................................................................... 16 شکل 2-5- روابط شکل پذیری برای قاب خمشی پرتال ............................................................................. 17 شکل 2-6- مد گسیختگی و تشکیل طبقه نرم .............................................................................................. 18 شکل 2-7- چشمه اتصال ...................................................................................................................................... 19 شکل 2-8- حلقه های هیسترزیس قاب مهاربندی همگرا............................................................................ 21 شکل 12-9- رفتار رفت و برگشتی عضو قطری مهاربند ............................................................................. 22 شکل 2-10- تصویر عضو بادبندی در نواحی مختلف دیاگرام شکل2-9-................................................ 22 شکل 2-11- تغییر شکل غیر متقارن قابهای با بادبندی همگرا ................................................................ 23 شکل 2-12- منحنی های هیستر زیس بادبندهای با رفتار فقط کششی ............................................... 24 شکل 2-13- نمونه ای از منحنی های هیسترزیس سیستم با بادبندی فشاری – کششی ............... 25 شکل 2-14- نمونه هایی از قاب های خارج از مرکز .................................................................................... 25 شکل 2-15- اثر تغییر طول تیر پیوند بر سختی قاب .................................................................................. 26 شکل2-16- ارتباط مقاومت نهایی با نسبت .............................................................................................. 27 شکل2-17- ارتباط زمان تناوب اصلی با نسبت ..................................................................................... 27 شکل 2-18- مکانیسم های جذب انرژی در سیستم های خمشی و واگرا ............................................ 28 شکل 2-19- تغییرات دوران خمیری مورد نیاز با نسبت ..................................................................... 29 شکل2-20- نیروهای موجود در تیر پیوند قاب واگرا .................................................................................... 30 شکل2-21- نیروهای موجود در تیر رابط ........................................................................................................ 30 شکل 2-22-انواع قابها با مهاربند زانویی ........................................................................................................... 33 شکل 2-23- دو نمونه از اتصال بادبند به زانویی ........................................................................................... 35 شکل 2-24-انواع قابهای KBF........................................................................................................................... 36 شکل 2-25- قاب دارای مهاربند زانویی ........................................................................................................... 37 شکل 2-26- روند تشکیل مفاصل خمیری قابها تحت تاثیر زلزله نوغان ................................................. 38 فصل سوم : شکل 3-1- قاب TKBF....................................................................................................................................... 41 شکل 3-2- پلان محوربندی ................................................................................................................................. 42 شکل 3-3- سیستم TKBF+MRF.............................................................................................................. 43 شکل 3-4- سیستم EBF+MRF................................................................................................................... 43 شکل 3-5- سیستم CBF+MRF................................................................................................................... 44 شکل 3-6- خلاصه بارگذاری ............................................................................................................................... 46 شکل 3-7- نیروی محوری در عضو مهاربندی و عضو زانویی ...................................................................... 47 شکل 3-8- نیروی برشی در عضو زانویی .......................................................................................................... 47 شکل 3-9- لنگر خمشی در عضو زانویی .......................................................................................................... 47 شکل 3-10- کمانش موضعی قوطیهای جدار نازک ..................................................................................... 48 شکل 3-11-نمودار لنگر- انحنا برای تیرستونهای H با نسبت عرض به ضخامت متفاوت ................ 49 شکل 3-12- نمودار پسماند تیرستونهای فولادی H با نسبتهای مختلف عرض به ضخامت ............ 49 شکل3-13- نمونه رفتا رلنگر – تغییر شکل برای تیرهای I تحت لنگر یکنواخت با نسبت مختلف 50 شکل 3-14- نمودار لنگر – انحنا برای تیرهای I با نسبت مختلف.................................................... 51 شکل3-15- نمودار لنگر – انحنای تیرهای I با نسبت مختلف تحت لنگر متغیر......................... 51 شکل 3-16- نمونه رفتار تیرستون بال پهن تحت نیروی محوری و لنگر خمشی هنگامیکه حالت تسلیم غالب باشد 52 شکل 3-17- رفتار تیرستونهای بال پهن که در صفحه عمود بر محور قوی ناپایدار گردیده‌اند.......... 53 شکل 3-18- روابط تجربی لنگر – زاویه دوران تیرستونها در معرض ناپایداری جانبی – پیچشی... 53 شکل3-19- نمونه قاب TKBF......................................................................................................................... 65 شکل 3-20- نمونه قاب CBF............................................................................................................................ 66 شکل 3-21- نمونه قاب EBF............................................................................................................................ 66 شکل 3-22- نمونه قاب MRF........................................................................................................................... 66 شکل 3-23- نمونه قاب EBF با برون محوری روی ستون....................................................................... 66 شکل 3-24- نمونه قاب TKBF........................................................................................................................ 67 شکل 3-25- نمونه قاب..................................................................................................................................... 67 شکل 3-26- رویه برای نسبت ........................................................................................................ 69 شکل 3-27- منحنی‌های هم سختی برای نسبت قاب TKBF........................................ 69 شکل 3-28- رویه برای نسبت....................................................................................................... 71 شکل 3-29- منحنی‌های هم سختی برای نسبت قاب TKBF....................................... 71 شکل 3-30- رویه برای نسبت .............................................................................................................. 73 شکل 3-31- منحنی‌های هم سختی برای نسبت قاب TKBF............................................... 73 شکل 3-32- رویه برای نسبت ...................................................................................................... 75 شکل 3-33- منحنی‌های هم سختی برای نسبت قاب TKBF....................................... 75 شکل 3-34- رویه برای نسبت ......................................................................................................... 77 شکل 3-35- منحنی‌های هم سختی برای نسبت قاب TKBF........................................... 77 شکل 3-36- ناحیه بندی منحنی هم سختی قاب TKBF................................................. 79 شکل 3-37- ناحیه بندی منحنی هم سختی قاب TKBF.............................................. 79 شکل 3-38- ناحیه بندی منحنی هم سختی قاب TKBF...................................................... 80 شکل 3-39- ناحیه بندی منحنی هم سختی قاب TKBF............................................... 80 شکل 3-40- ناحیه بندی منحنی هم سختی قاب TKBF.................................................. 81 شکل3-41- نمودار شتاب مولفه طولی ( N16w ) زلزله 25 شهریور 1375 طبس....................... 90 شکل3-42- نمودار شتاب مولفه طولی زلزله 17 فروردین 1356 ناغان ............................................... 92 شکل 3-43- نمودار تغییر مکان – زمان قاب TKBF1 تحت زلزله طبس.......................................... 93 شکل 3-44- نمودار برش پایه – زمان قاب TKBF1 تحت زلزله طبس.............................................. 93 شکل 3-45- نمودار تغییر مکان – زمان قاب TKBF1 تحت زلزله ناغان............................................ 94 شکل 3-46- نمودار برش پایه – زمان قاب TKBF1 تحت زلزله ناغان................................................ 94 فصل چهارم : شکل 4-1- نمودار ابعاد هندسی بهینه جهت اثر توام سختی و شکل پذیری برای انواع مختلف قاب TKBF 96 1-1- مقدمه: سختی و شکل‌پذیری دو موضوع اساسی در طراحی ساختمانها در برابر زلزله‌اند. ایجاد سختی و مقاومت به منظور کنترل تغییرمکان جانبی و ایجاد شکل پذیری برای افزایش قابلیت جذب انرژی و تحمل تغییرشکلهای خمیری اهمیت دارند. در طراحی ساختمانهای فولادی مقاوم در برابر زلزله، استفاده از سیستمهای قابهای مقاوم خمشی MRF ، قابهای با مهاربند همگرا CBF و قابهای با مهاربند واگرا EBF رایج است. قابهای مقاوم خمشی MRF ، شامل ستونها و تیرهایی است که توسط اتصالات خمشی به یکدیگر متصل شده‌اند. سختی جانبی این قابها به سختی خمشی ستونها، تیرها و اتصالات در صفحه خمش بستگی دارد. در طراحی این قابها فلسفه تیر ضعیف و ستون قوی حاکم است. این امر ایجاب می‌کند که تیرها زودتر از ستونها تسلیم شوند و با شکل پذیری مناسب خود، انرژی زلزله را جذب و مستهلک کنند و اتصالات دربارهای حدی با شکل ‌پذیری غیرارتجاعی مناسب خود، قابلیت تحمل تغییر شکلهای خمیری را بالا ببرند.این قابها دارای شکل پذیری مناسب ولی سختی جانبی کمتری هستند(شکل1-1 ). شکل 1 – 1 – قابهای مقاوم خمشی [1] قابها با مهاربند همگرا CBF ، در برابر زلزله از نظر سختی، مقاومت و کنترل تغییرمکانهای جانبی در محدوده خطی دارای رفتار بسیار مناسبی‌اند، ولی در محدوده غیرارتجاعی به علت سختی جانبی مهاربندها، قابلیت جذب انرژی کمتری دارند و در نتیجه دارای شکل پذیری کمتری‌اند. قابهای با مهاربند همگرا شکلهای مختلفی دارند که در آئین نامه 2800 ایران برخی از آنها معرفی شده است. در این قابها برش وارده در ابتدا توسط اعضای قطری جذب شده و سپس مستقیماً به نیروی فشاری و کششی تبدیل شده و به سیستم قائم انتقال می‌یابند (شکل 1-2 ) . شکل 1-2 - قاب با مهار بند هم محور [1] در قابهای با مهاربند واگرا EBF ، عضو قطری بصورت برون محور به تیر کف متصل می‌گردد. در محل اتصال تیر و ستون و مهاربند مقداری خروج از مرکزیت ایجاد می‌شود به نحوی که تیر رابط توانایی تحمل تغییر شکلهای بزرگ را داشته باشد و همانند فیوز شکل پذیر عمل کنند (شکل 1-3 ). شکل 1-3 - نمونه‌هایی از قابهای خارج از مرکز [2] لذا یکی از اهداف اصلی در طراحی این قابها در برابر زلزله، جلوگیری از کمانش مهار بندها از طریق بوجود آمدن مفاصل پلاستیک برشی و خمشی در تیرهای رابط می‌باشد. قابهای با مهاربند واگرا از قابلیت هر دوی قابهای مقاوم خمشی و قابهای با مهاربند همگرا بهره گرفته‌اند و بنابراین سختی و شکل پذیری مناسب را به صورت توام تامین می‌کنند. تعیین صحیح طول تیرهای رابط و طراحی مناسب آنها بسیار حائز اهمیت‌اند. اگرچه قابهای EBF دارای رفتار بسیار مناسبتری‌اند، ولی با تسلیم تیر رابط در اثر بارهای زلزله، خسارات جدی به کف وارد خواهد شد و چون این عضو به عنوان یک عضو اصلی سازه‌ای محسوب می‌شود، ترمیم سازه نیز مشکل خواهد بود. این موضوع و گسترش مفاصل پلاستیک به تیرها و سپس به ستونها در قابهای EBF ، تمایل به یافتن سیستمهای جدید مقاوم در برابر زلزله با رفتار مناسبتر از لحاظ شکل پذیری و سختی جانبی را افزایش می‌دهد. در این راستا تلاشهای صورت گرفته ، منجر به پیشنهاد سیستمی به نام مهاربند زانویی KBF شده است [ 3 ] ( شکل1-4 ) . در این سیستم وظیفه تامین سختی جانبی به عهده مهاربند قطری بوده که حداقل یک انتهای آن به جای اتصال به محل تلاقی تیر و ستون، به میان یک عضو زانویی متصل است و دو انتهای این عضو زانویی به تیر و ستون اتصال دارد. شکل 1-4 – قاب با مهاربند زانویی در واقع با وارد آمدن نیروی مهاربند به این عضو، سه مفصل پلاستیک در دو انتها و محل اتصال آن به مهاربند تشکیل می‌گردد و باعث جذب و استهلاک انرژی زلزله خواهد شد. از آنجا که در این سیستم پیشنهادی، مهاربندهای قطری برای عدم کمانش طراحی نمی‌گردند، رفتار آن تحت بار رفت و برگشتی، بسیار شبیه رفتار سیستم مهاربند ضربدری یا همگرا بوده و منحنی رفتار هیسترزیس آن به صورت ناپایدار و نامنظم بوده و سطح خالص زیر منحنی، کاهش می‌یابد. بنابراین قادر به جذب انرژی زیادی نیست. به همین دلیل در تکمیل این سیستم پیشنهاد گردید [4] تا همانند مهاربند واگرا EBF ، عضو مهاربندی برای عدم کمانش و تسلیم، طراحی گردد. در این صورت می‌توان تنها از یک عضو مهاربندی استفاده کرد. هدف نهایی در طرح و کاربرد این سیستم این است که در پایان زلزله وارده، تنها عضو زانویی دچار تسلیم و خرابی شده باشد و قاب و مهاربند آن همچنان ارتجاعی مانده و دچار کمانش یا تسلیم نگردیده باشد تا بتوان تنها با تعویض عضو زانویی، مجدداً سیستم را مورد استفاده قرار داد. در ادامه برخی از مفاهیم لرزه‌ای و همچنین سیستمهای مختلف مهاربندی جانبی سازه‌ها با بیان ویژگیهای آنها به طور مختصر بیان خواهد شد. سپس به بررسی بیشتر سیستم مهاربندی جانبی زانویی خواهیم پرداخت و بهترین نمودار برای ابعاد هندسی این سیستم که سختی و شکل‌پذیری توام را نتیجه دهد، معرفی خواهیم نمود. 1-2 – شکل‌پذیری سازه‌ها: بطور معمول می‌توان منحنی برش پایه – تغییر مکان سازه‌ها را با یک نمودار دو خطی ایده‌آل ارتجاعی - خمیری جایگزین نمود. این نوع ساده سازی در سازه‌های معمول تقریب قابل قبولی دارد. در یک سیستم یک درجه آزادی نسبت تغییر مکان جانبی حداکثر به تغییرمکان جانبی تسلیم ضریب شکل پذیری نامیده می‌شود و بصورت زیر بیان می‌گردد [ 2 ] . (1 – 1 ) پارامترهای فوق در شکل 2-1 مشخص گردیده است. شکل 1 – 5- منحنی ایده‌آل و واقعی نیرو – تغییر مکان یک سیستم [2] در واقع ضریب شکل پذیری () بیانگر میزان ورود سازه در ناحیه خمیری است. در سازه‌های چنددرجه آزادی تعریف ضریب شکل پذیری قدری مشکل‌تر است، چون در این نوع سازه‌ها برای هر درجه آزادی می‌توان ضریب شکل پذیری جداگانه‌ای تعریف نمود. پوپوف (popov) شکل پذیری یک قاب را بصورت نسبت تغییرمکان حداکثر به تغییر مکان تسلیم در بالاترین نقطه سازه پیشنهاد کرده است. بطور خلاصه می‌توان گفت هر چه تغییرمکان یک سازه بعد از تسلیم و قبل از انهدام بیشتر باشد شکل پذیری آن بیشتر است. جهت کاهش نیروهای جانبی وارده به سازه و ایجاد طرحی اقتصادی از طریق جذب و استهلاک انرژی در ناحیه خمیری باید این مشخصه را تا مقدار مورد نیاز افزایش داد. با توجه به این موضوع که حرکات زلزله بصورت رفت و برگشتی بوده و سازه‌ می‌تواند در هر سیکل مقداری از انرژی زلزله را بصورت هیسترزیس مستهلک نماید. 1-3- مفصل ولنگر خمیری : مفصل خمیری در یک قطعه به حالتی گفته می‌شود که در آن (یا مقطعی از آن) با افزایش بسیار اندک نیرو، تغییرشکل قابل توجهی ایجاد شود. به عنوان مثال اگر یک تیر ساده (شکل 1-6 ) تحت اثر بار افزایشی قرار گیرد, منحنی نیرو – تغییر مکان آن مشابه شکل 1-7 خواهد بود [ 2 ] . همانگونه که در شکل 1-7 دیده می‌شود در ناحیه AB ، تغییرمکان تیر افزایش قابل توجهی می‌یابد در حالیکه بار وارده آنچنان افزایش نیافته است. این بدان مفهوم است که با افزایش بارهای خارجی، لنگرخمشی در مقطع مورد نظر زیاد شده و به تدریج تارهای انتهایی مقطع وارد مرحله تسلیم می‌شوند. با افزایش بار تمامی تارهای مقطع تسلیم شده و به این ترتیب مقطع خمیری کامل و مفصل خمیری تشکیل می‌گردد. لنگر ایجاد شده در این مقطع که تا زمان انهدام تقریباً ثابت باقی می‌ماند لنگر خمیری MP نامیده می‌شود. ( شکل 1-8 ). شکل 1-6- تیر دو سر مفصل تحت اثر بار افزایش [2] شکل 1-7- منحنی نیرو – جابجایی وسط دهانه تیر [2] شکل 1-8- نمودار تغییرات کرنش در یک مقطع تحت اثر خمش [2] 1-4- منحنی هیسترزیس و رفتار چرخه‌ای سازه‌ها: یکی از خصوصیات مصالح معمول ساختمانی داشتن ناحیه غیرخطی بعد از گذر از مرحله خطی است، مصالح بعد از تسلیم (ورود به ناحیه غیرخطی) توانایی تحمل نیروی خود را بطور کامل از دست نداده و می‌توانند مقداری نیرو تحمل نمایند. این موضوع در رفتار فولاد بعنوان شاخص ترین مصالح ساختمانی به خوبی قابل مشاهده است (شکل 1-9 ). شکل 1-9- منحنی واقعی تنش – کرنش فولاد [2] به منظور جلوگیری از طراحی مقاطع غیراقتصادی لازم است که با شناخت کافی از رفتار خمیری مصالح از این توانایی آنها در طراحی استفاده گردد. در انتهای ناحیه غیرخطی نمودار تنش - کرنش، مصالح به حد گسیختگی می‌رسد که به این حد، حد نهایی یا نقطه انهدام مصالح گویند. اگر یک میله را تحت کشش محوری رفت و برگشتی قرار دهیم، منحنی مطلوب ارتجاعی خمیری نیرو – تغییر مکان آن بصورت شکل( 1-10 ) است. کل انرژی انتقالی به میله سطح ذوزنقه است که سطح مثلث بیانگر انرژی است که در اثر باربرداری برگشت داده شده و سطح متوازی الاضلاع باقیمانده بیانگر انرژی جذب شده توسط عضو می‌باشد. هر چه سطح متوازی الاضلاع بزرگتر باشد نشانگر جذب انرژی بیشتر توسط سیستم است (شکل 1-10) [ 2 ] . شکل 1-10 منحنی هیسترزیس ایده‌ال و دو منحنی دارای زوال [2] در صورت تکرار این منحنی برای چند سیکل می‌توان اطلاعات مختلفی از منحنی حاصل برداشت کرد که عبارتند از: 1 – میزان جذب انرژی سیستم (با توجه به سطح محدود به منحنی‌ها) 2 – سختی‌ سازه‌ در هر دوره از بارگذاری(در صورتیکه سختی سازه در دوره‌های بارگذاری متوالی کاهش یابد، سیستم دارای زوال سختی می‌باشد.) 3 – مقدار مقاومت سازه در هر دوره بارگذاری ( در صورتیکه نقطه انتهایی متناظر با مقاومت سازه در دوره‌های بارگذاری متوالی کاهش یابد، سیستم دارای زوال مقاومت می‌باشد.) 4 – شکل پذیری سیستم در مدت عملکرد زلزله 5 – تعداد حداکثر دوره‌های رفت و برگشت لذا ملاحظه می‌گردد که دیاگرام هیسترزیس جهت بررسی و شناخت رفتار لرزه‌ای سازه‌ها از اهمیت ویژه‌ای برخوردار است و در مدلسازی تحلیلی و یا آزمایشگاهی، این منحنی به عنوان معیــاری برای سنجش رفتار دستگاه به کار می‌رود. از اتصال نقاط اوج منحنی‌ها در یک مجموعه منحنی بارگذاری و باربرداری، منحنی پوش هیسترزیس (منحنی اسکلتون) بدست می‌آید (شکل1-11 ) . بطور معمول اگر بارگذاری بصورت افزایشی و یک طرفه انجام شود، منحنی برش پایه – تغییر مکان حاصل با تقریب مناسبی منطبق بر منحنی اسکلتون خواهد بود [ 2 ]. شکل 1-11- رفتار سازه‌ها تحت بار دوره‌ای. الف – رفتار نامناسب، ب – رفتار مناسب [2] 1-5- مقایسه رفتار خطی و غیرخطی در سیستمهای سازه‌ای: شکل 1-12 دو نوع رفتار سازه‌ای را نشان می‌دهد. از مقایسه دو نوع رفتار خطی و غیرخطی این نتیجه بدست می‌آید که اگر یک سیستم با رفتار خطی بخواهد انرژی زلزله را جذب کند باید دارای ظرفیت باربری به اندازه F1 باشد، در این صورت سازه تغییر مکان ماکزیممی برابر را تجربه خواهد کرد. در سیستم غیرخطی با حد جاری شدن F2 ، سیستم سازه‌ای باید برای نیروی F2 طراحی گردد ولی تغییر مکان را تجربه خواهد کرد [ 2 ] . شکل 1-12- مقایسه رفتار خطی و غیرخطی ایده‌آل سیستم‌های مقاوم ساختمانی [2] همانطور که در شکل ملاحظه می‌گردد، F2 کوچکتر از F1 می‌باشد ولی بزرگتر از است. در سیستم با رفتار خطی همه تغییرشکلهای ارتجاعی هستند، ولی در سیستم غیرخطی، قسمی از تغییرشکلها ارتجاعی و بخش دیگر غیرارتجاعی هستند. طراحی سازه برای نیروی کمتر F2 منجر به اقتصادی شدن مقاطع می‌گردد. هم اکنون روش توصیه شده در همه آئین نامه‌ها بر این مبنا استوار است که سازه براساس نیروهای کمتر (کاهش یافته) طراحی گردد و با ارائه روشها و جزئیات خاص امکان پذیرش تغییرشکلهای غیرخطی بزرگتر () در سازه ایجاد شود. لذا طراحی شکل پذیر سازه‌ها را می‌توان به این ترتیب خلاصه کرد که در این روش، طراحی سازه بر مبنای نیروهای کمتری انجام می‌گردد ولی باید با تدابیر ویژه امکان پذیرش تغییرمکانهای زیاد در اعضاء را ایجاد کرد. 1-6- ضریب شکل پذیری: ضریب شکل پذیری که اغلب به اختصار شکل پذیری نامیده می‌شود از ابتدایی ترین و ساده‌ترین پارامترهای مطرح در خصوص طراحی لرزه‌ای سازه‌هاست. در یک سازه با رفتار ارتجاعی میزان تغییرشکل و نیرو به طور مستقیم از طریق سختی سازه به هم وابسته‌اند. در حالیکه در حالت غیرارتجاعی این تغییرشکل و نیرو به طور مستقیم به هم مربوط نمی‌شوند. این امر به علت تغییرات سختی سازه در ناحیه غیرارتجاعی می‌باشد. شکل پذیری به عبارت ساده قابلیتی از یک سازه و یا یک جزء سازه‌ای است که مطابق آن سیستم می‌تواند تغییرشکلهای غیرارتجاعی از خود نشان دهد، بدون اینکه این تغییرشکلها منجر به انهدام سازه و یا جزء سازه‌ای گردد. معمولاً شکل‌پذیری برای سیستم یک درجه آزادی بصورت زیر تعریف می‌‌گردد: (1 – 2 ) که در رابطه فوق حداکثر تغییر شکل قبل از گسیختگی و تغییر شکل نظیر نقطه تسلیم است. را می‌توان مجموع و (تغییر شکل پلاستیک) دانست [ 2 ] . (1-3 ) البته در اکثر مواقع به دلیل کوچکی نسبت به می‌توان رابطه فوق را بصورت ساده زیر نوشت: (1-4 ) نسبت به نوع مسئله ممکن است برای تعریف شکل پذیری به جای تغییر مکان انتهای عضو از دوران و یا انحناء استفاده کرد. 1-7- ضریب کاهش نیروی زلزله در اثر شکل‌پذیری سازه: در طرح سازه‌های مقاوم در برابر زلزله سعی می‌شود تا شرایطی فراهم گردد که یک سازه بتواند تغییرشکلهای غیرارتجاعی زیادتری از خود نشان دهد. این موضوع بیشتر به لحاظ اقتصادی حائز اهمیت است. اساساً وقتی سازه بصورت ارتجاعی و خطی در برابر زلزله از خود واکنش نشان می‌دهد، حداکثر نیروی بیشتری متحمل می‌شود، در نتیجه مقاومت مورد نیاز سازه جهت پایداری، نسبت به حالتی که وارد مرحله غیرارتجاعی می‌شود زیادتر خواهد بود. چنین حالتی باعث پرداخت هزینه‌های بیشتری برای طراحی ایمن سازه خواهد شد. با توجه به این موضوع و در نظرداشتن اصل ساده سازی طراحی، آئین‌نامه‌های طراحی در برابر زلزله با بهره‌گیری از ظرفیت استهلاک انرژی در اثر رفتار غیرخطی، نیروی زلزله موثر و در نتیجه مقاومت مورد نیاز سازه را کاهش می‌دهند. مطابق تعریف ضریب کاهش مقاومت (کاهش در مقاومت مورد نیاز به علت رفتار چرخه‌ای سازه) بصورت نسبت مقاومت مورد نیاز حالت ارتجاعی به مقاومت مورد نیاز حالت غیرارتجاعی تعریف می‌شود (شکل 1-13 ) . (1-5 ) که در رابطه فوق حداقل مقاومت حد تسلیم مورد نیاز برای جلوگیری از تسلیم شدن یک سازه تحت یک زلزله معین است، در حالیکه مقاومت حد تسلیم مورد نیاز در حالتی است که در آن شکل پذیری سازه برابر باشد. با این تعریف ، ضریب رفتار، ضریب اصلاح طیف بازتاب مقاومت در حالت غیرارتجاعی است. بدین ترتیب به سادگی با تقسیم به ضریب رفتار طیف بازتاب نظیر شکل پذیری به دست می‌آید [2]. ضریب کاهش به عوامل متعددی همچون نوع سیستم سازه‌ای، کیفیت اتصالات، تعداد طبقات و . . . بستگی دارد. نوع یک سیستم بیشترین تاثیر را در مقدار ضریب فوق دارد و عوامل دیگر همچون تعداد طبقات ساختمان مانند نوع سیستم تاثیرگذار نیستند. شکل 1-13- طیف بازتاب ارتجاعی و غیرارتجاعی با شکل پذیری ثابت [2] 1-8- ضریب اضافه مقاومت: علاوه بر ضریب کاهش که در فوق مطرح شد، یک ضریب کاهش اضافی دیگر در مقاومت متصور است و در آئین‌نامه‌ها و تحقیقات به رسمیت شناخته شده است. این ضریب کاهش که معمولاً به نام Rs شناخته می‌شود و به منظور در نظر گرفتن این واقعیت است که مقاومت جانبی واقعی یک سازه معمولاً بیشتر از مقاومت جانبی طراحی آن سازه‌ است. تاثیر این ضریب کاهش در اغلب مواقع کمتر از (ضریب کاهش مقاومت ناشی از شکل پذیری) است. این ضریب به عواملی نظیر امکان باز پخش مجدد نیروهای داخلی اعضاء به دلیل درجات نامعینی موجود، مقاومت‌های بالاتر از حد مشخص شده مصالح مصرفی، سخت شدگی کرنشی، ضوابط حداقل آیین‌نامه‌ای جهت رعایت ابعاد و جزئیات قطعات، اثرات مجموعه بارگذاری‌های مختلف، اثرات اجزاء غیر سازه‌‌ای و . . . . بستگی دارد [2]. اهمیت اضافه مقاومت در جلوگیری از خراب شدن برخی سازه‌ها در هنگام وقوع زلزله‌های شدید سالهاست که توسط محققین شناخته شده است. برای مثال در زلزله 1985 مکزیک وجود اضافه مقاومت عامل بسیار موثری در جلوگیری از خرابی برخی ساختمانها بوده است. اهمیت ضریب اضافه مقاومت در ساختمانهای کوتاه مرتبه بیشتر است. 1-9- ضریب رفتار ساختمان: تخمین بار موثر ناشی از زلزله بر ساختمانها در اغلب آئین‌نامه‌ها مانند UBC ، NEHRP ، NBCC و آئین‌نامه زلزله ایران، بر پایه تحلیلهای ارتجاعی خطی قرار دارد. این نیروها به علت آنکه سازه‌ها دارای رفتار غیرخطی هستند، با استفاده از ضریب کاهش مقاومت طراحی سازه یا ضریب رفتار (R ) کاهش یافته‌اند و بدین وسیله تصحیح می‌شوند. در حقیقت منشاء این ضریب دو ضریب معرفی شده در فوق یعنی ضریب کاهش ناشی از شکل‌پذیری، و ضریب کاهش ناشی از مقاومت، RS ، می‌باشد [2]. طبق تعریف ضریب رفتار با استفاده از رابطه زیرقابل محاسبه است: (1-6 ) در رابطه فوق مقاومت الاستیک مورد نیاز زلزله مقاومت طراحی سازه است (شکل 1-14 ). شکل 1-14- تعریف پارامترهای غیرخطی [2] با توجه به اینکه روشهای طراحی در دو سطح: الف) بار نهایی در بتن (آیین نامه بتن ایران و آیین نامه ACI ) یا ضرایب بار و مقاومت نهایی در فولاد . ب) روش تنش مجاز (آئین نامه فولاد ایران و آئین نامهAISC – ASD ) متداول است، بنابراین می‌تواند به ترتیب یکی از دو مقدارو یا را به خود اختصاص دهد. لذا رابطه 1-6 را می‌توان به صورتهای زیر نوشت. (1-7 ) (1-8 ) در این رابطه ضریب رفتار بر مبنای تنش‌های حد نهایی و ضریب رفتار بر مبنای تنش‌های مجاز هستند. بین دو سطح طراحی ذکر شده رابطه زیر را می‌توان در نظر گرفت [2] . (1-9 ) در رابطه فوق، Y ، ضریبی است که براساس نحوه برخورد آیین‌نامه‌های طراحی با تنش‌های طراحی (تنش تسلیم و تنش مجاز) تعیین می‌شود و مقدار این ضریب معمولاً در حدود 4/1 الی 7/1 می‌باشد. در آیین‌نامه UBC97 مقدار این ضریب 4/1 ارائه شده است. مثلاً این ضریب براساس آئین‌نامه AISC-ASD به طریق زیر تخمین زده می‌شود: (1-10 ) در رابطه فوق Z و S به ترتیب اساس مقطعهای خمیری و ارتجاعی مقطع هستند و ضریب به دلیل افزایش تنش مجاز در طراحی در برابر نیروهای زلزله می‌باشد. نسبت که به آن ضریب شکل نیز گفته می‌شود برای قطعات بال پهن در حدود 15/1 است. (1-11 ) لذا ضریب رفتارهای حد نهایی و حد تنش مجاز به صورت زیر ارتباط دارند [2] . (1-12 ) برای مشخص شدن نقش شکل‌پذیری و اضافه مقاومت در شکل‌پذیری، ضریب رفتار بصورت زیر نوشته می‌شود. (1-13 ) بنابراین با داشتن ضرائب (ضریب کاهش ناشی از شکل پذیری) و (ضریب کاهش ناشی از اضافه مقاومت) می‌توان ضریب رفتار یک سیستم سازه‌ای را محاسبه کرد [2] . پارامترهای بکار رفته در روابط فوق در شکل 1-14 نشان داده شده‌اند. 1-10- ضریب تبدیل جابه‌جایی خطی به غیرخطی: در طراحی لرزه‌ای، جابه‌جایی جانبی غیرخطی (واقعی) یک سازه ناشی از زلزله‌های شدید را می‌توان با اعمال ضریبی به نام ضریب افزایش تغییرمکان، ، به جابه‌جایی‌های حاصل از تحلیل خطی سازه تحت اثر بارهای جانبی آیین‌نامه‌ای، تخمین زد. تخمین جابه‌جایی واقعی سازه (پاسخ غیرخطی) از روی جابه‌جایی حاصل از تحلیل خطی که به آسانی محاسبه می‌شود، می‌تواند در تعیین حداقل فاصله مجاز بین دو ساختمان مجاور، تعیین محدودیت‌ جابه‌جایی نسبی طبقات به منظور کنترل کرنش در مصالح و اجزاء غیرسازه‌ای و تاسیساتی و . . . . کاربرد داشته باشد. البته ضریب افزایش تغییرمکان غیرخطی نیز همانند دیگر پارامترهای لرزه‌ای یک سازه مثل ضریب رفتار، به مشخصات زلزله اعمال شده، پریود اصلی ارتعاش سیستم، تعداد درجات آزادی سیستم و . . . بستگی دارد [2] . 1-11 – سختی : برای محدود کردن تغییرمکان نسبی طبقات در حد بهره‌برداری در برابر زلزله‌های خفیف، به منظور جلوگیری از تغییرمکان زیاد طبقات در برابر زلزله‌های متوسط و شدید، به منظور کاهش اثرات و کنترل تنش‌ها و کرنش‌های ایجاد شده در سازه، سختی باید تا حد مورد نیاز افزایش یابد. 1-12 – مقاومت : جهت کنترل تنش‌های ایجاد شده در سازه در اثر زلزله بطوریکه این تنش‌ها از حد مقاومت نهایی یا مجاز مقاطع تشکیل‌دهنده سازه بالاتر نرود تا ایمنی کلی سازه به خطر نیفتد. 1-13- جمع بندی پارامترهای کنترل کننده: می‌دانیم رفتار هر سیستم سازه‌ای در هنگام زلزله تا حد زیادی توسط ظرفیت استهلاک انرژی آن (از طریق رفتار شکل‌پذیر) تعیین می‌شود. این رفتار شکل پذیر می‌تواند توسط شکست‌های موضعی ناگهانی و ناپایداری‌های دینامیکی تحت تاثیر قرار گیرد. با توجه به امکانات و روشهای طراحی موجود معیارهای طراحی عموماً مبتنی بر روشهای استاتیکی و یا دینامیکی خطی هستند. پارامترهای کنترل کننده به جای شکل‌پذیری مورد نیاز، نیروهای اعضاء و تغییرمکانهای جانبی هستند. لذا می‌توان اینگونه نتیجه گرفت که برای یک سازه مقاوم در برابر زلزله باید سه عامل مقاومت، سختی و شکل پذیری در معادله عمومی طراحی(ظرفیت < نیاز) صدق کند. تامین نشدن هر یک از سه عامل فوق باعث ایمن نبودن سازه در برابر زلزله خواهد شد. 2-3-7- تسلیم و مکانیزم خرابی در تیر پیوند: در پیوندهای خیلی کوتاه که تسلیم برشی رخ می‌دهد، کل طول جان تیر پیوند تحت اثر برش به تسلیم می‌رسد. از آنجا که نیروی برشی در کل طول تیر پیوند ثابت است، کرنش برشی ثابت و یکنواختی در کل طول تیر پیوند رخ می‌دهد. به علاوه تسلیم برشی، مقدار لنگرهای انتهایی تیر پیوند را محدود می‌کند و از کرنشهای بزرگ خمشی در انتهای تیر پیوند جلوگیری می‌کند. از طرف دیگر در تیرهای پیوند خیلی بلند که تسلیم برشی رخ نمی‌دهد، رفتار تیر پیوند به اینصورت است که کرنشهای خمشی غیرارتجاعی غیریکنواخت و بزرگی در دو انتهای تیر پیوند متمرکز می‌گردد، در حالیکه بقیه طول تیر پیوند ارتجاعی باقی می‌ماند. در محدوده بین دو حد برشی و خمشی، تسلیم برشی و خمشی به میزان قابل توجهی در رفتار تیر پیوند اثر می‌گذارند. این محدوده، ناحیه انتقالی از رفتار برشی به رفتار خمشی است. به علت تفاوت کامل مکانیزمهای تسلیم باید با توجه به طول تیر پیوند، مکانیزم تسلیم آن پیش‌بینی گردد، چرا که ظرفیت و نیازهای دوران خمیری مکانیزمهای برشی و خمشی بسیار متفاوت است. در تیرهای پیوند کوتاه، کمانش برشی غیرارتجاعی جان کنترل کننده حالت خرابی می‌باشد که می‌توان کمانش برشی را با تقویت‌کننده‌های جان کنترل نمود. در تیرهای پیوند بلند مکانیزم خرابی معمولاً با تغییرشکل خمشی بزرگی توام است. در این حالت ترکیبی از کمانش بال، کمانش فشاری جان و یا کمانش جانبی پیچشی مورد انتظار است. همچنین به علت اثر کرنش خمشی بزرگ توسعه یافته در انتهای تیر پیوند بلند، امکان شکست اتصالات جوشی می‌تواند یک مد خرابی باشد [2] . 2-3-8- اثر کمانش جان تیر پیوند: آزمایشات نشان داده است که برش بسیار زیادی در جان تیر پیوند برشی بوجود می‌آید. اثر سخت‌شدگی مجدد فولاد سبب می‌شود که حد نهایی تسلیم برشی برابر در نظر گرفته شود. از طرف دیگر دوران خمیری تیر پیوند نیز سبب تسلیم جان تیر پیوند می‌شود. لذا برای جلوگیری کمانش زود هنگام جان نیز باید در سراسر طول آن از تقویت‌کننده‌های قائم جان استفاده کرد تا علاوه بر جلوگیری از کمانش موضعی جان بتوان از مقاومت پس از کمانش جان نیز استفاده نمود [2] . ظرفیت جذب انرژی در تیرهای پیوندی که بوسیله سخت کننده قائم جان تقویت شده‌اند از ظرفیت جذب انرژی تیرهای پیوندی که سخت کننده ندارند بسیار بیشتر است. در تیرهای پیوند بلند هر چند نیازی به تامین سخت کننده‌ها به علت کمانش جان وجود ندارد ولی آزمایشهای مختلف نشان داده‌اند که در حالی که سخت‌کننده‌های قائم جان وجود ندارد و مهارهای کافی نیز در طول تیر پیوند پیش‌بینی نشده‌اند به دلیل کمانش جانبی پیچشی بال، تیر پیوند رفتار ضعیفی از خود نشان می‌دهد. 2-3-9- مقاومت نهایی تیر پیوند: فلسفه اصلی طراحی مهاربند‌های واگرا متمرکز نمودن عملکرد غیرخطی قاب در تیر پیوند می‌باشد. بطوریکه پیوند براین اساس طرح و جزئیات آن تعیین می‌گردد تا مقاومت و ظرفیت دوران خمیری مورد نیاز را فراهم کند. از طرف دیگر سایر اعضای قاب باید مقاومت کافی داشته باشند. به خصوص مهاربند‌ها، ستونها و تیرهای خارج از محدوده تیر پیوند باید برای حداکثر نیرویی که با تسلیم تیر پیوند متناظر است طراحی شوند. یعنی طراحی باید براساس روش طرح ظرفیت انجام پذیرد. بنابراین در مهاربند‌های واگرا باید یک تخمین حد بالا و معقول از برش نهایی و لنگرهای انتهایی تیر پیوند برای انجام عملیات طراحی قاب صورت گیرد [2] . بررسی‌هائیکه روی تیرهای پیوند کوتاه انجام شده است، مشخص نموده که مقاومت نهایی برشی از ظرفیت برشی مقطع تیر پیوند، ، بزرگتر است. این اضافه مقاومت ناشی از عوامل زیر می‌باشد: سخت شدگی مجدد فولاد اثر سیستم سقف مرکب کف بزرگتر بودن تنش تسلیم واقعی از تنش تسلیم اسمی بخصوص در ورق جان. لذا پیشنهاد شده است که مقاومت نهایی برش 5/1 برابر مقاومتی که براساس تئوری ساده خمیری به دست می‌آید در نظر گرفته شود.

مشخصات فروشنده

نام و نام خانوادگی : علیرضا دهقان

شماره تماس : 09120592515 - 02634305707

ایمیل :iranshahrsaz@yahoo.com

سایت :urbanshop.ir

مشخصات فایل

فرمت : doc

تعداد صفحات : 150

قیمت : برای مشاهده قیمت کلیک کنید

حجم فایل : 11630 کیلوبایت

برای خرید و دانلود فایل و گزارش خرابی از لینک های روبرو اقدام کنید...

پرداخت و دانلودگزارش خرابی و شکایت از فایل