فایلوو

سیستم یکپارچه همکاری در فروش فایل

فایلوو

سیستم یکپارچه همکاری در فروش فایل

تحقیق در مورد اشنایی با ماتریس

تحقیق در مورد اشنایی با ماتریس

ک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه:27

 

فهرست مطالب ندارد

آشنایی با ماتریسها

مقدمه: آشنایی با ماتریسها

مقدمه: در تاریع آمده است که اولین بار یک ریاضیدان انگلیسی تبار به نام کیلی ماتریس را در ریاضیات وارد کرد. با توجه به آنکه در آن زمان ریاضیدانان اغلب به دنبال مسائل کاربردی بودند، کسی توجهی به آن نکرد. اما بعدها ریاضیدانان دنباله ی کار را گرفتند تا به امروز رسید که بدون اغراق می توان گفت در هر علمی به گونه ای با ماتریس ها سروکار دارند. یکی از نقش های اصلی ماتریس ها آن است که آنها ابزار اساسی محاسبات عملی ریاضیات امروز هستند، درست همان نقشی که سابقاً اعداد بر عهده داشتند. از این نظر می توان گفت نقش امروز ماتریس ها همانند نقش دیروز اعداد است. البته، ماتریس ها به معنایی اعداد و بردارها را در بر دارند، بنابراین می توان آنها را تعمیمی از اعداد و بردارها در نظر گرفت. در ریاضیات کاربردی ماتریس ها از ابزار روز مره هستند، زیرا ماتریس ها با حل دستگاه معادلات خطی ارتباط تنگاتنگی دارند و برای حل ریاضی مسائل عملی، مناسبترین تکنیک، فرمول بندی مسئله و یا تقریب زدن جوابهای مسئله با دستگاه معادلات خطی است که در نتیجه ماتریس ها وارد کار می شوند. اما، مشکلی اصلی در ریاضیات کابردی این است که ماتریس های ایجاد شده، بسیار بزرگ هستند و مسئله اصلی در آنجا کار کردن با ماتریس های بزرگ است. از جنبه نظری، فیزیک امروزی که فیزیک کوانتوم است، بدون ماتریس ها نمی توانست به وجود آید. هایزنبرگ اولین کسی که در فیزیک مفاهیم ماتریس ها را به کار برد- اعلام کرد «تنها ابزار ریاضی که من در مکانیک کوانتوم به آن احتیاج دارم ماتریس است.» بسیاری از جبرها مانند جبر اعداد مختلط و جبر بردارها را با ماتریس ها بسیار ساده می توان بیان کرد. بنابراین با مطالعه ماتریسها، در واقع یکی از مفیدترین و در عین حال جالبترین مباحث ریاضی مورد بررسی قرار می گیرد.

 

تعریف ماتریس: اگر بخواهیم مانند کیلی، ماتریس را تعریف کنیم، باید گفت هر جدول مستطیلی که دارای تعداد سطر و ستون است و در هر خانه آن یک عدد وجود دارد یک ماتریس است. به عبارت دیگر هر آرایشی از اعداد مانند مثالهای زیر را ماتریس می گویند.

 

اگر ماتـریس      را A بنامیـم، در این صورت ماتـریس ] 15و10 و 1-[ را سطـر اول و ] 19و7 و5[ را سطر دوم و ،     ،    را به ترتیب ستون اول، ستون دوم، ستون سوم A گویند. ماتریس A را که دارای دو سطر و ستون است یک ماتریس دو در سه (2و3) می گویند. اصطلاحاً می گوییم A از مرتبه 2 در 3 است. (نوشته می شود 3×2). بنابراین ماتریس ] 7و5 و12[ B= یک ماتریس 4×1 و ماتریس C یک ماتریس 3×3 است.

 

به اعداد یا اشیاء واقع در جدول ماتریس درایه های آن ماتریس می گویند. درایه های هر ماتریس در جا ومکان مشخصی قرار دارند. مثلاً در ماتریس درایه 3 در سطر اول و ستون اول است. همچنین درایه سطر دوم، ستون سوم عدد 6 است. به طور کلی اگر درایه های سطر I ام ستون jام را با aij نشان دهیم؛ داریم

 

و 5=12a   2=22a    3=11a

 

به طور کلی یک ماتریس دلخواه 3×2 را بصورت زیر نمایش می دهیم:

 

اغلب برای سهولت، به جای نمایش ماتریس به صورت فوق، آن را با نماد 3*2[aij]نشان می دهند که در آن aij را درایه یا عنصر عمومی ماتریس 3*2[aij] گویند. به طور کلی برای ساختن انواعی از ماتریس های دیگر می توانیم به جای آن که درایه های ماتریس را از اعداد حقیقی انتخاب کنیم، درایه ها را از اعداد مختلط عناصر یک میدان، توابع و یاحتی ماتریس ها انتخاب کنیم.

 

در حالت کلی یک ماتریس m*n بصورت A=[aij]m*n عبارت است از:

 

 

 

ماتریس های مربع: اگر در یک ماتریس تعداد سطرها و ستون ها مساوی باشد، آن را ماتریس مربع گویند. در این حالت اگر یک ماتریس مانند A دارای مرتبه ی n*n باشد، گوییم A یک ماتریس مربع مرتبه n است. مجموعه ماتریس های مربع مرتبه ی n را با     یا   نشان می دهند.

 

درایه های 11a و 22a و و anx یک ماتریس مربع مرتبه n باشد، مجموع درایه های قطر اصلی A را اثر ماتریس A می نامند و با نماد tr(A) نشان می دهند. بنابراین:

 

در واقع اثر ماتریس، تابعی از مجموعه ماتریسهای مربع در مجموعه اعداد حقیقی است، یعنی

 

مثال: اگر      درایه های قطر اصلی A عبارتند از 4- و 6- بنابراین

 

2=6+4-tr(A)

 

ماتریس سطری: ماتریس هایی را که فقط یک سطر دارند ماتریس سطری یا بردار سطری می نامند. مثلاً ماتریس ی ماتریس سطری *n1 است.

 

ماتریس ستونی: ماتریسی است که فقط دارای یک ستون باشد. هر ماتریس ستونی را بردار ستونی نیز می گویند. مثلاً ماتریس زیر یک ماتریس ستونی 1×m است.

 

ماتریس صفر: ماتریسی است که همه درایه هایش صفر باشد. بنابراین ماتریس   ماتریس صفر است. هرگاه:

 

ماتریس صفر از مرتبه m*n را با نماد Qm*n نشان می دهند.

 

مثال:

 

اگر مرتبه ماتریس صفر، داده شده باشد و یا از طریق متن، مرتبه آن معلوم باشد، در اینصورت برای سهولت ماتریس صفر را با و یا حتی با O نشان می دهند.

 

تساوی ماتریس ها: هرگاه در ریاضیات اشیا جدیدی معرفی شوند، باید مشخص شوند که چه وقت دوتای آنها با هم مساویند. مثلاً در مجموعه اعداد گویا دو عدد دو سوم و چهار ششم را، علیرغم اینکه یک شکل نیستند، مساوی می نامند. در مورد اعدادگ ویا، دو عدد       را مساوی می گویند. هر گاه ad=bc تساوی ماتریسها نیز به صورت زیر تعریف می شود.

 

تعریف: دو ماتریس و   مساویند هرگاه هم مرتبه باشند و درایه های نظیر در دو ماتریس (یعنی درایه های هم موضع) مساوی باشند. به عبارت دیگر، دو ماتریس    و   مساویند هر گاه داشته باشیم:

 

مثال:      و   تساوی A و B به این معناست که

 

جمع ماتریس ها: مجموع دو ماتریس   و   ماتریسی است که با نماد A+B نشان می دهیم و به صورت زیر تعریفق می شود.

 

توجه کنید که برای جمع دو ماتریس می بایست دو ماتریس هم مرتبه باشند. بنا به تعریف اگر A+B+C=[Cij] در اینصورت

 

برای این که تعریف فوق روشن تر شود، شکل گسترده آن را در حالت ماتریس های 2×2 در زیر می آوریم

 

تذکر: با توجه به تعریف، جمع دو ماتریس A+B وقتی تعریف شده که A و B هم مرتبه باشند. در این صورت A و B را ماتریس های قابل جمع می گویند.

 

تعبیر عمل جمع دو ماتریس به مثابه یک ماشین: عمل جمع را می توان به منزله ماشینی تصور کرد که دارای دو ورودی و یک خروجی است (مطابق شکل)، به طوری که اگر دوماتریس مثلا2×2 به آن بدهیم از خروجی آن یک ماتریس 2×2 بیرون می اید.

 

قرینه یک ماتریس: اگر A یک ماتریس m*n باشد، قرینه A ماتریسی است از همان مرتبه که با نماد –A نشان می دهند و اگر    در این صورت بنا به تعریف

 

مثال: قرینه ماتریس عبارت است از   و ملاحظه می شود که

 

خواص جمع ماتریس ها

 

الف) جمع ماتریسها خاصیت شرکت پذیری دراد

 

اثبات: فرض کنید   و   و   سه ماتریس هم مرتبه دلخواه باشند، نشان می دهیم

 

(A+B)+C=A+(B+C)

 

قبل از اثبات لازم است معنی عبارات (A+B)+C و A+(B+C) را بدانیم. در این مورد از تعبیر عمل جمع به مثابه عمل یک ماشین کمک می گیریم. از آنجا که ماشین جمع دو ورودی دارد نمی توان یکباره سه ماتریس را با هم جمع کرد، از این رو برای جمع سه   ماتریس A و B و C می توان ابتدا A و B را به ماشین داده و A+B را به دست آورد. سپس A+B و C را به ماشین می دهیم تا (A+B)+Cبه دست آید.

 

عبارت A+(B+C) به این معناست که نخست B و C را وارد ماشین کرده ایم و B+C را به دست آورده ایم و سپس (B+C)+A را بیرون می دهد.

 

حال می خواهیم نشان دهیم که در هر صورت ماتریس های بدست آمده مساویند برای این کار قرار می دهیم

 

درایه سطر I ام ماتریس =D+C درایه سطر I ام ستون j ام ماتریس (A+B)+C

 

ب) ماتریس صفر عضو بی اثر مجموعه ماتریس ها نسبت به عمل جمع است.

 

اثبات: فرض کنید   یک ماتریس دلخواه باشد، نشان می دهیم.

 

که در آن ماتریس صفر هم مرتبه با A است.

 

اثبات مشابه اثبات فوق است.

 

ج) هر ماتریس نسبت به عمل جمع دارای متقابل است.

 

دیدیم که قریبنه هر ماتریس A=[aij]، ماتریسی هم مرتبه با آن به صورت –A[-aij] است. در واقع –A متقابل A نسبت به عمل جمع است، زیرا قبلاً نشان دادیم

 

که در آن ماتریس صفر هم مرتبه با A است.

 

د) جمع ماتریس ها دارای خاصیت جابه جایی است.

 

یعنی اگر A و B دو ماتریس دلخواه هم مرتبه باشند، داریم    A+B=B+A

 

اثبات:

 

تعریف ماتریس ها: فرض کنید A و B دو ماتریس هم مرتبه باشند، A-B به صورت زیر تعریف می شود

 

A-B=A+(-B)

 

از تعریف فوق نتیجه می گیریم برای اینکه با ماشین جمع، A-B را به دست آوریم، نخست ماشینی با یک ورودی و یک خروجی می سازیم تا هر ماتریسی به آن دهیم آن ماتریس را قرینه کند. حال با دادن ماتریس B به این ماشین، -B از آن خارج می شود.

 

سپس، A و –B را به ماشین جمع می دهیم تا A+(-B) یعنی A-B را بیرون دهد.

 

مقایسه خواص جمع ماتریس ها با خواص جمع اعداد حقیقی:

 

اگر به خواص ماتریس ها توجه کنیم ملاحظه می کنیم که این خواص همانند خواص جمع اعداد حقیقی است، حال می خواهیم ببینیم کدامیکی از خواص دیگر مجموعه اعداد حقیقی با عمل جمع در مجموعة ماتریس ها با عمل جمع برقرار است. می دانیم برای حل معادله a+x=b در مجموعه اعداد حقیقی باید به طریقی a را از طرف اول معادله حذف کرد. بنابراین، طرفین معادله را با –a جمع می کنیم، در اینصورت:

 

(-a)+ (a+x)=-a+b

 

با استفاده از خاصیت جابجایی و شرکت پذیری جمع داریم:

 

(-a+a) +x=b-a)

 

در نتیجه +x=b-a0 یعنی x=b-a0 این شیوه را می توان برای حل معادله A+X=B در مجموعه ی ماتریس ها نیز به کار برد و گزاره زیر را به دست آورد.

 

گزاره: اگر A و B دو ماتریس هم مرتبه باشند، در این صورت معادله A+X=B دارای جواب منحصر به فرد X=A-B است.

 

یکی دیگر از خواص مجموعه اعداد حقیق با عمل جمع، قانون حذف است. یعنی اگر a+x=a+y در این صورت می توان نتیجه گرفت x=y این خاصیت نیز در مورد ماتریس ها با عمل جمع وجود دارد.

 

قانون حذف در جمع ماتریس ها برقرار است

 

اثبات: روش اول، فرض کنید A و B و C سه ماتریس هم مرتبه باشند، نشان می دهیم

 

A+B=A+Cà B=C

 

طرفین تساوی A+B=A+C را با –A جمع می کنیم با توجه با خاصیت شرکت پذیری و خاصیت ماتریس صفر نتیجه می شود B=C

 

روش دوم: چون A+B=A+C پس

 

درایه iام ستون jام =A+C درایه سطر iام ستون jام A+B

 

تذکر: برای اثبات قانون حرف دو روش مختلف ارائه دادیم. در روش اول، از خواص جمع ماتریسها یعنی شرکت پذیری، عضو بی اثر و استفاده کردیم، یعنی همان روشی که برای اعداد حقیقی می توان به کار برد. اما در روش دوم ویژگی های ماتریس نقش اصلی را ایفا می کند. در واقع در مورد روش اول برای ما مهم نیست A و B و C ماتریس هستند یا عدد حقیقی و یا هر چیز دیگر، در مورد هر دسته ای از اشیا که دارای خواص جمع ماتریس ها باشند، می توانیم این شیوه را به کار ببریم و این همان رسالت جبر مدرن است که با اصل موضوعی کردن، قضایای مشابه را به یکباره ثابت می کند. زیرا شیوه و روش اثبات قضیه در هر جایی که این اصول صدق می کنند، معتبر است.

 

ضرب یک عدد (اسکالر) در ماتریس

 

تعریف: فرض کنید   ماتریسی از مرتبه m*n و r یک عدد حقیقی باشد. از ضرب عدد حقیقی r در A ماتریسی به دست می آید که آن را به صورت rA نمایش می دهیم و به صورت زیر تعریف می شود.

 

بنابراین (درایه سطر iام ستون jام ماتریس =r.(A درایه سطر iام ستون j ام ماتریس (rA)

 

مثال: اگر در این صورت

 

خواص ضرب عدد در ماتریس:

 

1)فرض کنید r و s دو عدد حقیقی و A یک ماتریس m*n باشد در این صورت داریم

 

r(sA)=(rs)A

 

2)اگر r و s دو عدد حقیقی و A یک ماتریس m*n باشد در این صورت داریم

 

(r+s)A=rA+sA

 

3)اگر r یک عدد حقیقی و A و B دو ماتریس m*nباشند در این صورت

 

r(A+B)=rA+rB

 

4)اگر r یک عدد حقیقی ناصفر و A وB دو ماتریس دلخواه m*n باشند در این صورت

 

rA=rBà A=B

 

ضرب ماتریس ها و خواص آن

 

ضرب ماتریس سطری در ماتریس ستونی

 

تعریف: ماتریس سطری    و ماتریس ستونی

 

را در نظر می گیریم حاصل ضرب A در B به صورت زیر تعریف می شود.

 

با توجه به تعریف فوق حاصل ضرب یک ماتریس سطری در ماتریس ستونی یک عدد حقیقی است که برای به دست آوردن آن به صورت زیر عمل می کنیم.

 

مثال:

 

ضرب ماتریس ها در حالت کلی:

 

تعریف: اگر     و   دو ماتریس مخصوص باشند در این صورت حاصل ضرب AB ماتریسی است m*p که اگر آن را با C نشان دهیم داریم

 

ملاحظاتی در مورد ضرب دو ماتریس

 

1-ضرب ماتریسی AB در صورتی تعریف شده است که تعداد ستون های ماتریس اولی، یعنی A با تعداد سطرهای ماتریس دومی، یعنی B، برابر باشد. در این صورت گویند ماتریس A در ماتریس B قابل ضرب است.

 

2-اگر AB=C برای به دست آوردن هر یک از درایه های ماتریس C به نمحلی که درایه واقع است توجه می کنیم. مثلاً برای بدست آوردن 12C سطر اول A را در ستون دوم B، طبق ضرب یک ماتریس سطری در ماتریس ستونی ضرب می کنیم، و به همین ترتیب

 

ستون پنجم ماتریس B× سطر سوم ماتریس A = 35C

 

اگر 1R و 2R و 3R به ترتیب نمایشگر سطر اول و سطر دوم و سوم ماتریس 2×3A و 1C و 2C و 3C نمایشگر ستون اول ، دوم و سوم ماتریس 3×2B باشند. در این صورت AB ماتریسی 2×2 به صورت زیر است.

 

که در آن، برای مثال، 2C1R حاصل ضرب سطر اول A در ستون دوم B را نشان می دهد.

 

ماتریس واحد (همانی)

 

ماتریس واحد، ماتریس مربعی است که تمام درایه های قطر اصلی آن 1 و سایر درایه های صفر است.برای مثال ماتریس واحد 2×2 که با نماد 2I نمایش می دهیم به عبارت است از

 

به همین ترتیب ماتریس واحد 3×3 عبارت است از

 

تذکر: ماتریس I را از اینرو، واحد گویند که رفتاری شبیه عدد 1 در ضرب اعداد دارد و چون روی هر ماتریسی (قابل ضرب با آن) اثر کند همان ماتریس را می دهد بنابراین آن را ماتریس همانی نیز می گویند.

 

گزاره: اگر در ماتریس A سطر دوم صفر باشد و B ماتریسی باشد که AB تعریف شده باشد، در این صورت سطر دوم AB نیز صفر است.

 

اثبات: قرار می دهیم AB=C درایه های سطر دوم AB از ضرب سطر دوم A در ستون های B به دست می آید. فرض کنید Cijدرایه دلخواهی از سطر دوم AB باشد، بنابراین

 

به طور کلی، اگر در ماتریس A سطر iام صفر باشد در این صورت سطر I ام ماتریس AB صفر است. به طریق مشابه می توان ثابت کرد.

 

گزاره: اگر در ماتریس B ستون jام صفر باشد و A ماتریسی باشد که AB تعریف شده باشد، در این صورت ستون jام ماتریس AB صفر است.

 

بررسی خاصیت جابه جایی در ضرب ماتریسها:

 

دو ماتریس A و B مفروضند. AB وقتی تعریف شده است که تعداد ستونهای A با تعداد سطرهای B مساوی باشد. مثلاً داشته باشیم و   اگر m و p مساوی نباشد، BA تعریف نشده است. برای اینکه BA تعریف شده باشد لازم است که p=m، یعنی B ماتریس n*m باشد. در اینصورت AB از مرتبه m*m و BA ماتریسی است از مرتبه n*m. حال اگر بخواهیم AB و BA هر دو موجود و هم مرتبه باشند می بایست A و B هر دو ماتریس های مربع و هم مرتبه باشند. اما در این حالت نیز ممکن است BA و AB مساوی نباشد. به مثال زیر توجه کنید.

 

مثال: اگر         در اینصورت

 

ملاحظه می شود که AB و BA مساوی نیستند. مثال فوق بیانگر آن است که ضرب ماتریس ها دارای خاصیت جابه جایی نیست. حال به مثال زیر توجه کنید.

 

مثال: اگر      در این صورت

 

یعنی AB=BA

 

ماتریس های تعویض پذیر:

 

تعریف: اگر A و B دو ماتریس مربع باشند به طوری که AB=BA در این صورت A و B را تعویض پذیر گوییم و یا گوییم A و B با یکدیگر جابجا می شوند.

 

مثال: دو ماتریس   و   تعویض پذیرند. زیرا

 

یک خاصیت غیر منتظره در ماتریسها:

 

می دانیم که مجموعه اعداد حقیقی دارای این خاصیت است که : «حاصلضرب دو عدد حقیقی ناصفر، عددی حقیقی ناصفر است.»

 

اما در مورد ماتریسها چنین نیست. به مثال زیر توجه کنید. دو ماتریس غیر صفر را در نظر بگیرید. داریم:

 

ملاحظه می شود که ماتریس هایی مانند A و B وجود دارند به طوری که و   ولی این نوع ماتریس ها را مقسوم علیه صفر می گویند.

 

تعریف: فرض کنید A یک ماتریس مربع باشد. اگر ماتریس ناصفری مانند B بتوان یافت به طوری    یا در این صورت A را مقسوم علیه صفر گویند.

 

مثال: ماتریس   مقسوم علیه صفر است زیرا

 

توانهای طبیعی یک ماتریس مربع:

 

فرض کنید A یک ماتریس m*n باشد. برای آنکه AA وجود داشته باشد می بایست m=n ، یعنی در صورتی AA تعریف شده است که A ماتریسی مربع باشد. در این صورت AA را با 2A نمایش می دهند.

 

تعریف: اگر A یک ماتریس مربع باشد، در این صورت توان های طبیعی A به صورت زیر تعریف می شوند

 

=A1A و =AA2A و 2=AA3A وبا استقرا

 

An+1 = AAn

 

در صورتی که A یک ماتریس مربع مرتبه n باشد توان صفر A نیز به صورت زیر تعریف می وشد.

 

که در آن In ماتریس واحد مرتبه n است.

 

ماتریس های بالا مثلثی

 

ماتریس مربعی   را بال مثلثی می نامند هرگاه

 

Aij     I>j     à aij=0

 

یعنی، در یک ماتریس بالا مثلثی کلیه درایه های واقع در پایین قطر اصلی صفرند. برای مثال یک ماتریس بالا مثلثی 3×3 در حالت کلی به صورت زیر است

 

این ماتریس ها را به صورت زیر نشان می دهند

 

همانطور که از نامگذاری این نوع ماتریس ها معلوم است، در هر ماتریس بالا مثلثی، درایه های واقع بر قطر اصلی و بالای قطر اولی مشخص کننده ماتریس هستند. زیرا تمام درایه های پایین قطر اصلی صفرند.

 

مثال: ماتریس مربع و صفر ماتریس واحد، بالا مثلث اند.

 

ماتریس های پایین مثلثی

 

ماتریس مربع A=[aij] را پایین مثلثی نامند هرگاه

 

یعنی،  در یک ماتریس پایین مثلثی، همه درایه های واقع در بالای قطر اصلی، صفرند.

 

مثال: ماتریس روبه رو یک ماتریس

 

پایین مثلثی 3×3 است. گاهی برای سهولت این ماتریس را به صورت زیر هم نشان می دهند.

 

نماد O در بالای قطر اصلی به معنای آن است که تمام درایه های بالای قطر اصلی صفرند. نامگذاری این نوع ماتریس ها همانند قبل، بر این اساس استوار است که در ماتریس های پایین مثلثی درایه های واقع بر قطر اصلی ، مشخص کننده ماتریس هتسند.

 

مثال: ماتریس مربع صفر و ماتریس واحد پایین مثلثی نیز هستند.

 

ماتریس های قطری:

 

ماتریع مربع D=[dij] را قطری می نامند، هر گاه هم بالا مثلثی و هم پایین مثلثی باشد، یعنی در یک ماتریس قطری، درایه های پایین و بالای قطر اصلی همگی صفرند، به عبارت دیگر، D قری است هرگاه

 

بنابراین، ماتریس قطری D به صورت زیر نوشته می شود.

 

برای سهولت این ماتریس را به صورت زیر هم نشان می دهند.

 

همانطور که از نام این نوع ماتریس ها بر می آید، در یک ماتریس قطری فقط درایه های واقع بر قطر اصلی مشخص کننده ماتریس اند، برای همین ماتریس قطری را به صورت

 

diaj(d11 , d12 , dnn)

 

نیز نشان می دهند.

 

مثال: ماتریس   قطری است که به صورت(2- و 3 و2) D=diag  نیز می توانیم آن را بنویسیم.

 

ماتریس واحد (همانی)

 

ماتریس واحد، ماتریس اسکالری (آن دسته از ماتریس های قطری را که همه درایه های واقع بر قطر اصلی آنها مساویند، ماتریس اسکالر نامند) است که درایه های واقع بر قطر اصلی آن همگی مساوی 1 است. ماتریس واحد مرتبه n را با In نشان می دهند.

 

مثال: ماتریس واحد 3×3 عبارت است از

 

وقتی مرتبه ماتریس واحد معلوم باشد و یا اهمیت نداشته باشد، ماتریس واحد را با I نشان می دهند و برای هر ماتریس مرتبه n مانند A داریم     InA=AIn=A

 

یعنی، ماتریس واحد، عضو بی اثر مجموعه ماتریس های مربع نسبت به عمل ضرب است. برای همینن ماتریس واحد رفتاری شبیه عدد یک در ضرب اعداد دارد.

 

و به سادگی دیده می شود که برای هر عدد طبیعی K داریم:       IK=I

 

مثال: هر ماتریس اسکالر مضربی از ماتریس واحد است. یعنی؛

 

ماتریس های خود توان

 

ماتریس مربع A را خودتوان می نامند هرگاه =A2A

 

 مثال: ماتریس  خودتوان است زیرا؛

 

گزاره: اگر A خودتوان باشد، در این صورت برای هر عدد طبیعی n، داریم:

 

An=A

 

ماتریس های پوچ توان:

 

ماتریس مربع A را پوچ توان نامند هرگاه به ازای یک عدد طبیعی، مانند n، داشته باشیم

 

بدیهی است که اگر  به ازای هر عدد طبیعی بزرگتر از n مانند m داریم

 

کوچکترین این n ها را اندیس پوچ توانی A گویند.

 

زیرماتریس ها وافراز کردن

 

یک زیر ماتریس یک ماتریس مفروض A ماتریسی است که از حذف تعدادی از سطرها یا ستون های ماتریس A بدست آمده باشد، برای مثال اگر

 

در این صورت هر یک از ماتریسهای زیر یک زیر ماتریس A می باشند.

 

زیر ماتریس     از حذف سطرهای اول و دوم و ستونهای اول و سوم، و زیر ماتریس ]4   3  2 [ از حذف سطرهای دوم و سوم و چهارم و ستون اول به دست می آیند.

 

هرگاه با ترسیم خطوط افقی و عمودی بین سطرها و ستونهای یک ماتریس آن را تقسیم بندی کنیم، گوییم ماتریس را افراز کرده ایم. با تغییر این خطوط افرازهای متفاوتی از یک ماتریس ساخته می شود. مثلاً

 

دو افراز مختلف از ماتریس A می باشند.

 

وقتی ماتریس ها از ظرفیت حافظه کامپیوتر بزرگترند، از ماتریس های افراز شده استفاده فراوان می کنند. مثلاً در ضرب دو ماتریس افراز شده، می توان ماتریس ها را روی دیسک نگه داشت. و فقط زیر ماتریس هایی را که در تشکیل حاصل ضربهای زیر ماتریسی لازمند در حافظه آورد. معلوم است که افراز باید به قسمی صورت گیرد که حاصل ضرب ماتریسهای نظیر قابل تعریف باشد.

 

فرض کنید A و B ماتریسیهایی باشند که AB تعریف شده باشد حال اگر A و B را به صورت

 

افزار کرده باشیم در این صورت به آسانی ثابت می شودکه برای محاسبه ماتریس AB می توان C و D و را شبیه درایه ها تصور کرد و عمل ضرب را انجام داد، بنابراین

&nb


مشخصات فروشنده

نام و نام خانوادگی : یعقوب ذاکری

شماره تماس : 09017568099 - 07642351068

ایمیل :shopfile95.ir@gmail.com

سایت :shopfile95.sellfile.ir

برای خرید و دانلود فایل و گزارش خرابی از لینک های روبرو اقدام کنید...

پرداخت و دانلودگزارش خرابی و شکایت از فایل

دانلود مقاله رشته برق زیرگروه مخابرات بررسی الگوریتم MUSIC و MVDR

بررسی الگوریتم MUSIC و MVDR
بررسی الگوریتم MUSIC و MVDR - دانلود مقاله رشته برق زیرگروه مخابرات بررسی الگوریتم MUSIC و MVDR



دانلود مقاله رشته برق زیرگروه مخابرات بررسی الگوریتم MUSIC و MVDR
فایل بصورت pdf می باشد

مشخصات فروشنده

نام و نام خانوادگی : مهدی حیدری

شماره تماس : 09033719795 - 07734251434

ایمیل :info@sellu.ir

سایت :sellu.ir

مشخصات فایل

فرمت : pdf

تعداد صفحات : 5

قیمت : برای مشاهده قیمت کلیک کنید

حجم فایل : 115 کیلوبایت

برای خرید و دانلود فایل و گزارش خرابی از لینک های روبرو اقدام کنید...

پرداخت و دانلودگزارش خرابی و شکایت از فایل

مقاله بررسی ماتریس حسابداری اجتماعی در 20 صفحه ورد قابل ویرایش

مقاله بررسی ماتریس حسابداری اجتماعی
مقاله بررسی ماتریس حسابداری اجتماعی - مقاله بررسی ماتریس حسابداری اجتماعی در 20 صفحه ورد قابل ویرایش



مقاله بررسی ماتریس حسابداری اجتماعی در 20 صفحه ورد قابل ویرایش
1- مقدمه در نیم قرن گذشته، بسط و گسترش نظامهای حسابداری کلان و بخشی و الگوهای مرتبط به آنها در قلمروهای اقتصادی، اجتماعی و زیست محیطی با توجه به تحولات اقتصاد جهانی سه مرحله مشخص زیر را پشت سر گذاشته است: مرحله اول که حدود 10 سال طول کشید (دهه 1950 میلادی) کلیه نظامهای حسابداری کلان به شکل حسابهای ملی و بخشی در قالب نظام حسابداری جدول داده- ستانده و طیف وسیعی از الگوهای مرتبط به آنها اساساً در خدمت دیدگاههائی بودند که بعدها به دیدگاههای رشد محور معروف شدند (بانوئی، 1381). یکی از نارساییهای اساسی این نوع نظامهای حسابداری مذکور و دیدگاههای مرتبط به آن نادیده گرفتن مستقیم آمارهای اجتماعی (آمارهای مردمی) در کنار آمارهای نظام مند شده اقتصادی می باشد و بنابراین نباید انتظار داشت که الگوهای مرتبط به آنها انعطاف پذیری لازم و کافی را در تبیین عدالت اجتماعی داشته باشند (بانوئی، 1383). مرحله دوم یک دوره بیست ساله (1980-1960) را در بر می گیرد. در این دوره مشاهده می گردد که تلاشهای قابل توجهی در رفع نارساییها و اصلاح نظامهای حسابداری پیشین متناسب با دیدگاههای جدید توسعه اقتصادی با رویکردهای «نیازهای اساسی» و انسان محور صورت گرفته است. در این مورد حداقل چهار عامل اصلی نقش اساسی را داشته اند. یک: استقلال کشورهای در حال توسعه و مشکلات ساختاری اقتصادی و اجتماعی آنها. دو: ظهور دیدگاههای جدید توسعه اقتصادی با محوریت نیازهای اساسی و توسعه انسانی. سه: عدم هماهنگی بین نظامهای حسابداری کلان و بخشی موجود و الگوهای مرتبط به آن در تحلیلهای همزمان اقتصادی و اجتماعی. چهار: نادیده گرفته شدن ساختار اقتصادی و اجتماعی کشورهای در حال توسعه در نظامهای حسابداری موجود. زیرا که از نقطه نظر تاریخی، نظامهای حسابداری موجود، اساساً بر مبنای ساختار اقتصادی کشورهای پیشرفته طراحی شده اند [Stone, 1986]. به منظور رفع نارساییهای نظامهای حسابداری کلان و بخشی موجود، سازمان بین المللی، نظیر سازمان بین‌المللی کار و بانک جهانی و همچنین طیف وسیعی از پژوهشگران تلاش کردند یک نوع نظام حسابداری را طراحی نمایند که بعدها به نظام حسابداری میانه و الگوهای مرتبط به آن نیز به الگوهای میانه معروف گردید. جامع ترین و منسجم ترین نظام حسابداری میانه، ماتریس حسابداری اجتماعی می‌باشد که در مرحله سوم (دهه 1980 میلادی به بعد) به منظور تحلیلهای کمی آثار و تبعات سیاستهای اقتصادی و اجتماعی تعدیل ساختاری، خصوصی سازی و پیوستن به WTO پشتوانه آماری الگوی قابل محاسبه تعادلی عمومی قرار گرفته است. قبل از بررسی روش شناسی الگوی قابل محاسبه تعادل عمومی (که در فصل دوم ارائه خواهد شد) لازم است به ساختار کلی یک ماتریس حسابداری اجتماعی با توجه به ماکت ضمیمه مورد بررسی قرار گیرد. برای این منظور محتوای فصل حاضر در چهار محور کلی زیر سازماندهی می گردند. در محور اول سعی می شود تعریفی از ماتریس حسابداری اجتماعی ارائه گردد. بر مبنای تعریف وجه تمایز کارکرد ماتریس حسابداری اجتماعی و میزان پوشش آماری آن نسبت به نظامهای حسابداری کلان و بخشی موجود کاملاً مشخص می گردد. در محور دوم ضمن بررسی انواع حسابهای اصلی جامعه، آرایش حسابهای مذکور و تعامل منطقی آنها در قالب یک ماتریس حسابداری اجتماعی مورد بررسی قرار خواهد گرفت. در محور سوم، ابتدا بعضی از خواص اساسی آرایش حسابها در قالب یک ماتریس حسابداری نسبت به حسابهای سنتی T اشاره خواهد شد. سپس تفکیک پذیری هر یک از حسابهای اصلی به چندین زیر حساب برحسب واحدهای مشخص آماری مورد بررسی قرار گرفت. یکی از خصایص اصلی بکارگیری واحدهای مشخص آماری در طبقه بندی تفصیلی حسابهای اصلی در واقع تبیین بازارهای مختلف مانند بازار کالاها و خدمات، بازار تولید کنندگان، بازار مصرف کنندگان، بازار کار و غیره می باشند که در ماتریس حسابداری اجتماعی به صورت منطقی با یکدیگر در تعامل قرار می گیرند. بررسی کمی آثار و تبعات سیاستهای اقتصادی و اجتماعی بر روی بازارهای مذکور در واقع از اهداف اصلی الگوی قابل محاسبه تعادل عمومی به شمار می رود. در محور چهارم نظری اجمالی خواهیم داشت به حسابهای اصلی و زیر حسابهای منظور شده در ماتریس حسابداری اجتماعی سال 1380 اقتصاد ایران. 2- تعریف ماتریس حسابداری اجتماعی نظام‌مند کردن آمارهای اجتماعی (آمارهای مردمی) با آمارهای نظام‌مند شده کلان اقتصادی (حسابهای ملی) و بخشی اقتصادی (جدول داده- ستانده) براساس پشتوانه نظری اقتصاد خرد و کلان در یک یک ماتریس جبری را نظام حسابداری میانه و یا ماتریس حسابداری اجتماعی می نامند. از تعریف فوث می توان به دو کلی زیر رسید که میزان انعطاف پذیری ماتریس حسابداری اجتماعی را نسبت به سایر نظامهای حسابداری موجود آشکار می کند. الف- پوشش آماری اقتصادی و اجتماعی از تعریف فوق مشاهده می گردد که نظام حسابداری میانه هم به لحاظ پوشش آماری و هم به لحاظ کارکرد نسبت به نظامهای حسابداری کلان و بخشی گسترده تر است. زیرا که وظیفه کارکرد نظام حسابداری کلان به شکل نظام حسابهای ملی اساساً نظام‌مند کردن آمارهای کلان اقتصادی مانند مصرف کل جامعه، سرمایه‌گذاری کل جامعه، پس انداز کل، صادرات و واردات می باشد و حال آنکه وظیفه نظام حسابداری بخشی به شکل جدول داده- ستانده، نظام‌مند کردن آمارهای اقتصادی در سطح بخشهای مختلف اقتصادی است. در ماتریس حسابداری اجتماعی مشاهده می گردد که علاوه بر در نظر گرفتن آمارهای کلان و بخشی نظام‌مند شده اقتصادی حسابهای ملی و جدول داده- ستانده، آمارهای اجتماعی (آمارهای مردمی) را با توجه به ساختار اقتصادی، اجتماعی، سیاسی، فرهنگی و قومی هر کشور نیز پوشش می دهد. ب- منطق حسابداری و ربط آن به مفهوم اجتماعی براساس منطق حسابداری، جمع اقلام ورودی (جمع درآمد) هر حساب بایستی با جمع اقلام خروجی (جمع هزینه) آن حساب در یک دوره حسابداری با هم برابر باشند. نظام حسابداری کلان فقط می تواند برابری کل درآمد و کل هزینه جامعه را تضمین نماید (بانوئی و محمودی، 1380). کل درآمد (ارزش افزوده) به صورت پس مانده محاسبه می گردد. پس مانده به مازاد عملیاتی (درآمد سرمایه) بیشتر مصداق دارد تا جبران خدمات (درآمد نیروی کار). بنابراین، این نوع نظام حسابداری نمی تواند برابری هزینه و در آمد نهادهای جامعه مانند دولت، شرکتها و طیف وسیعی از گروههای اقتصادی و اجتماعی خانوارها را که بیش از سیصد سال پیش توسط گری گوری کینگ در قالب در سهم هر کس از درآمد ملی چقدر است؟ طراحی شده بود تضمین نماید. از طرف دیگر، نظام حسابداری بخشی داده- ستانده با توجه به حساسیت آن به ساختار تولید، برابری درآمد و هزینه بخشهای مختلف اقتصادی را به تفصیلی ترین شکل ممکن امکان پذیر می کند. درآمد عوامل تولید، به ویژه درآمدهای سرمایه و منابع طبیعی در قالب مازاد عملیاتی به صورت پس ماند محاسبه می شود و بدین ترتیب، درآمد امکان برابری درآمد و هزینه نهادهای جامعه همانند نظام حسابداری کلان (حسابهای ملی) در سطح کلان تضمین می گردد و در نتیجه پیوند بین جدول داده- ستانده و حسابهای ملی، حداقل در سطح کلان ایجاد می شود. اما این نوع نظام حسابداری، همانند نظام حسابداری کلان نمی تواند برابری هزینه و درآمد نهادهای جامعه، به ویژه طیف وسیعی از گروههای اقتصادی و اجتمای خانوارها را تضمین نماید. تحت چنین شرایطی نمی توان انتظار داشت که این نوع نظامهای حسابداری انعطاف پذیری لازم و کافی را در تحلیلهای عدالت اجتماعی داشته باشند. زیرا که اولاً برابری هزینه و درآمد نهادهای جامعه فقط در سطح کلان امکان پذیر می گردد. ثانیاً بعلت داشتن بار کلان، محدودیتهایی در طبقه بندی تفصیلی طیف وسیعی از گروههای اقتصادی و اجتماعی نیروی کار و خانوارها در این نوع نظام حسابداری وجود دارند و بدین ترتیب نمی توان مفهوم منطقی و واقعی اجتماعی، فرهنگی، سیاسی و قومی را در چنین نظامهای حسابداری پیدا نمود. بنابراین، واژه نظام حسابداری میانه که معمولاً به ماتریس حسابداری اجتماعی اطلاق می گردد [Van Bochove and Van Tuinen, 1986]. دارای این حسن است که امکان طبقه بندی تفصیلی طیف وسیعی از گروههای اقتصادی و اجتماعی نیروی کار را فراهم کرده و پیوند منطقی بین اقتصاد کلان، ساختار تولید و نهادهای جامعه مسیر می گردد. پیوند منطقی خود می تواند تصمین کننده برای درآمدها و هزینه های گروههای مختلف نیروی کار و خانوارها باشد [Ruggles & Ruggles, 1986, Ruggles, 1994]. 3- انواع حسابهای اصلی ماتریس حسابداری اجتماعی و تعامل منطقی آنها در قالب یک ماتریس حسابداری شاید یکی از محاسن اصلی ماتریس حسابداری اجتماعی نسبت به سایر نظامهای حسابداری موجود، انعطاف پذیری در طبقه بندی حسابهای اصلی آن باشد که در چارچوب یک ماتریس حسابداری اجتماعی بطور منطقی در تعامل با یکدیگر قرار می‌گیرند. معمولاً هر جامعه مستقل از درجه توسعه یافتگی دارای پنج حساب مشخص در سطح کلان می باشد. حساب تولید، حساب عوامل تولید، حساب نهادها، حساب انباشت و حساب دنیای خارج. جدول 1، ساختار کلی یک ماتریس حسابداری اجتماعی کلان حاوی پنج حساب را نشان می دهد. تعداد سطرها و ستونهای جدول چه در سطح کلان و چه در سطح حسابهای تفکیک شده همواره با هم برابر بوده بطوریکه جمع درآمد هر حساب بایستی با جمع هزینه حساب مذکور براساس منطق نظام حسابداری در یک سال مالی با هم برابر باشند. سطر و ستون 1 جدول مذکور به ترتیب نحوه فروش کالاها و خدمات (درآمد) تولید کنندگان و ساختار هزینه آنها را به نمایش می گذارد که در قالب حساب تولید منظور شده است. بعلاوه، سطر و ستون مورد بررسی ساختار نظام حسابداری بخشی به شکل جدول داده- ستانده در سطح کلان را آشکار می کند. جمع سطری آن تقاضای کل جامعه و یا جمع در آمد تولید کنندگان را نشان می‌دهد. تقاضای کل از دو قسمت مشخص تشکیل شده است. قسمت اول تقاضای واسطه بین بخشی است، درایه (1و1) که در آن مبادلات واسطه بین بخشهای مختلف اقتصادی (فرضاً کشاورزی، صنعت و خدمات) منظور می شود. این نوع داد و ستدها به ماتریس مبادلات واسطه بین بخشی معروف است که به نوعی بیانگرای ساختار اقتصاد و نشان دهنده بازار تولید کنندگان است (1). قسمت دوم تقاضای نهایی را آشکار می کند. قسمت مذکور نشان می دهد که کالاهای تولید شده توسط فعالیتهای تولیدی به چه صورت جذب تقاضای نهایی می‌گردند، درایه های (3و1، 4و1، 5و1). درایه (3و1) ارزش کالاها و خدماتی نهایی است که توسط طیف وسیعی از گروههای اقتصادی و اجتماعی خانوارها (2) و دولت مصرف می شوند. درایه مذکور بیانگر بازار داخلی مصرف کنندگان جامعه است. درایه های (4و1) و (5و1) به ترتیب باقی مانده اجزائی تقاضای نهایی است. بخشی از آن به منظور ایجاد ظرفیت تولیدی به صورت تشکیل سرمایه ثابت و همچنین به شکل موجودی انبار در بخشهای مختلف تشکیل می گردند درایه (4و1) بخش دیگر به صورت کالاها و خدمات به خارج از مرزهای کشور صادر می شوند، درایه (5و1). درایه های (3و1) و (4و1) به تقاضای نهایی داخلی معروف است و درایه (5و1) تقاضای خارجی است. اینکه تقاضای مذکور درایه (5و1) ماهیت واسطه ای و یا نهایی و یا ماهیت ترکیبی واسطه ای، نهایی دارند را نمی توان در نظامهای حسابداری موجود تبیین نمود (3). درایه مذکور ارتباط مستقیمی با بازارهای خارج و تئوریهای تجارت بین‌المللی دارد. یادداشتها: 1- برخلاف نظام حسابداری کلان (حسابهای ملی) و الگوهای مرتبط به آن، توانمندیها و انعطاف پذیری نظام حسابداری بخشی جدول داده- ستانده و نظام حسابداری میانه در قالب ماتریس حسابداری اجتماعی در این است که با توجه به بنیه‌های آماری هر کشور می توان بخشهای اقتصادی را برحسب ISIC به تفصیلی‌ترین شکل ممکن طبقه بندی و در قالب یک ماتریس سازماندهی نمود. این موضوع در بخش بعدی به تفصیل مورد بررسی قرار خواهد گرفت. برای اطلاع بیشتر به: بانوئی و عسگری (1382) مراجعه نمایید. 2- منظور از گروههای اقتصادی و اجتماعی خانوارها، در واقع تبیین الگوی مصرف خانوارها بر مبنای معیارهای مختلف طبقه بندی نظیر جغرافیایی، سرپرست، جنس، سواد، شاغل و غیر شاغل، قومی، مذهب، رنگ پوست و دارایی می باشد. بنظر می‌رسد که یکی از راههای شناخت بهتر از مفهوم اجتماعی در ماتریس حسابداری اجتماعی، بکارگیری این نوع معیارها است که معمولاً نمی توان در سایر نظامهای حساباری موجود بکار گرفت. بررسی این موضوع به بخش بعدی موکول خواهد شد. 3- با این حال در ماتریس حسابداری اجتماعی، سطر و ستون حساب دنیای خارج برحسب واحد آماری «نهاد» استفاده می گردد. بکارگیری انواع واحدهای آماری در هر یک از حسابهای اصلی جدول مذکور در بخش بعدی مورد بررسی قرار خواهد گرفت. 4- در نظامهای حسابداری کلان و بخشی متعارف موجود فرض بر این است که خانوارها دریافت کنندگان حقوق و دستمزد هستند. حال آنکه در عمل، همه اعضای یک خانوارها حقوق و دستمزد دریافت نمی کنند بلکه بعضی از اعضای یک خانوارها آنهم به صورت انفرادی حقوق و دستمزد دریافت می کنند. در ماتریس حسابداری اجتماعی سعی می شود با بکارگیری واحدهای مشخص آماری این نارسایی را اصلاح کند.

مشخصات فروشنده

نام و نام خانوادگی : علیرضا دهقان

شماره تماس : 09120592515 - 02634305707

ایمیل :iranshahrsaz@yahoo.com

سایت :urbanshop.ir

مشخصات فایل

فرمت : doc

تعداد صفحات : 20

قیمت : برای مشاهده قیمت کلیک کنید

حجم فایل : 17 کیلوبایت

برای خرید و دانلود فایل و گزارش خرابی از لینک های روبرو اقدام کنید...

پرداخت و دانلودگزارش خرابی و شکایت از فایل

مقاله بررسی ماتریس الگوریتم در 23 صفحه ورد قابل ویرایش

مقاله بررسی ماتریس الگوریتم
مقاله بررسی ماتریس الگوریتم - مقاله بررسی ماتریس الگوریتم در 23 صفحه ورد قابل ویرایش



مقاله بررسی ماتریس الگوریتم در 23 صفحه ورد قابل ویرایش
-2) EZW الگوریتم EZW در سال 1993 توسط shapiro ابداع شد نام کامل این واژه به معنای کدینگ تدریجی با استفاده از درخت ضرایب ویولت است. این الگوریتم ضرایب ویولت را به عنوان مجموعه ای از درختهای جهت یابی مکانی در نظر می گیرد هر درخت شامل ضرایبی از تمام زیرباندهای فرکانسی و مکانی است که به یک ناحیه مشخص از تصویر اختصاص دارند. الگوریتم ابتدا ضرایب ویولت با دامنه بزرگتر را کددهی می کند در صورتیکه دامنه یک ضریب بزرگتر یا مساوی آستانه مشخص باشد ضریب به عنوان ضریب معنی دار در نظر گرفته می شود و در غیر اینصورت بی معنی می باشد یک درخت نیز در صورتی معنی دار است که بزرگترین ضریب آن از نظر دامنه بزرگتر یا مساوی با آستانه مورد نظر باشد و در غیراینصورت درخت بی معنی است. مقدار آستانه در هر مرحله از الگوریتم نصف می شود و بدین ترتیب ضرایب بزرگتر زودتر فرستاده می شوند در هر مرحله، ابتدا معنی دار بودن ضرایب مربوط به زیر باند فرکانسی پایین تر ارزیابی می شود اگر مجموعه بی معنی باشد یک علامت درخت صفر استفاده می شود تا نشان دهد که تمامی ضرایب مجموعه صفر می باشند در غیراینصورت مجموعه به چهارزیرمجموعه برای ارزیابی بیشتر شکسته می شود و پس از اینکه تمامی مجموعه ها و ضرایب مورد ارزیابی قرار گرفته اند این مرحله به پایان می رسد کدینگ EZW براساس این فرضیه استوار است که چگالی طیف توان در اکثر تصاویر طبیعی به سرعت کاهش می یابد بدین معنی که اگر یک ضریب در زیر باند فرکانسی پایین تر کوچک باشد به احتمال زیاد ضرایب مربوط به فرزندان آن در زیر باندهای بالاتر نیز کوچک هستند به بیان دیگر اگر یک ضریب والد بی معنی باشد به احتمال زیاد فرزندان آن نیز بی معنی هستند اگر آستانه ها توانهایی از دو باشند میتوان کدینگ EZW را به عنوان یک کدینگ bit-plane در نظر گرفت در این روش در یک زمان، یک رشته بیت که از MSB شروع می شود کددهی می شود با کدینگ تدریجی رشته بیت ها و ارزیابی درختها از زیرباندهای فرکانسی کمتر به زیرباندهای فرکانسی بیشتر در هر رشته بیت میتوان به کدینگ جاسازی دست یافت. الگوریتم EZW بر پایه 4 اصل استوار است [3] 1- جدا کردن سلسله مراتبی زیرباندها با استفاده از تبدیل ویولت گسسته 1-1-2) تبدیل ویولت گسسته تبدیل ویولت سلسله مراتبی که در EZW و SPIHT مورد استفاده قرار می گیرد نظیر یک سیستم تجزیه زیرباند سلسله مراتبی است که در آن فاصله زیرباندها در مبنای فرکانس بصورت لگاریتمی است. در شکل 2-2 یک مثال از تجزیه دو سطحی ویولت روی یک تصویر دو بعدی نشان داده شده است. تصویر ابتدا با بکارگیری فیلترهای افقی و عمودی به چهار زیرباند تجزیه می‌شود. در تصویر (c ) 2-2 هر ضریب مربوط به ناحیه تقریبی 2×2 پیکسل در تصویر ورودی است. پس از اولین مرحله تجزیه سه زیر باند LH1 , HL1 و HH1 بعنوان زیرباندهای فرکانس بالایی در نظر گرفته می شوند که به ترتیب دارای سه موقعیت عمودی، افقی و قطری می باشند اگر Wv , Wh به ترتیب فرکانسهای افقی و عمودی باشند، پهنای باند فرکانسی برای هر زیر باند در اولین سطح تجزیه ویولت در جدول 1-2 آمده است[4] جدول 2-1 ) پهنای باند فرکانسی مربوط به هر زیر باند پس از اولین مرحله تجزیه ویولت با استفاده از فیلترهای مشابه (پایین گذر و بالاگذر) زیر باند LL1 پس از اولین مرحله تجزیه ویولت، مجدداً تجزیه شده و ضرایب ویولت جدیدی به دست می آید جدول 2-2) پهنای باند مربوط به این ضرایب را نشان می دهد. 2-1-2) تبدیل ویولت بعنوان یک تبدیل خطی میتوان تبدیل بالا را یک تبدیل خطی در نظر گرفت [5]. P یک بردار ستونی که درایه هایش نشان دهنده یک اسکن از پیکسلهای تصویر هستند. C یک بردار ستونی شامل ضرایب ویولت به دست آمده است از بکارگیری تبدیل ویولت گسسته روی بردار p است. اگر تبدیل ویولت بعنوان ماتریس W در نظر گرفته شوند که سطرهایش توابع پایه تبدیل هستند میتوان تبدیل خطی زیر را در نظر گرفت. فرمول بردار p را میتوان با تبدیل ویولت معکوس به دست آورد. فرمول اگر تبدیل W متعامد باشد. است و بنابراین فرمول در واقع تبدیل ویولت W نه تنها متعامد بلکه دو متعامدی می باشد. 3-1-2) یک مثال از تبدیل ویولت سلسله مراتبی یک مثال از تبدیل ویولت سلسله مراتبی در این بخش شرح داده شده است. تصویر اولیه 16*16 و مقادیر پیکسلهای مربوط به آن به ترتیب در شکل 3-2 و جدول 3-2 آمده است. یک ویولت چهارلایه روی تصویر اولیه اعمال شده است. فیتلر مورد استفاده فیلتر دو متعامدی Daubechies 9/7 است [6]. جدول 4-2 ضرایب تبدیل گرد شده به اعداد صحیح را نشان می دهد. قابل توجه است که ضرایب با دامنه بیشتر در زیرباندهای با فرکانس کمتر قرار گرفته اند و بسیاری از ضرایب دامنه های کوچکی دارند ویژگی فشرده سازی انرژی در تبدیل ویولت در این مثال به خوبی دیده می شود جدول 5-2 تصویر تبدیل یافته و کمی شده را نشان می دهد چنانکه کمی سازی تنها برای اولین سطح ویولت انجام گرفته است یک ضریب مقیاس 25/0 در هر ضریب فیلتر ویولت ضرب شده و سپس مجموعه فیلتر پاین گذر و بالاگذر روی تصویر اولیه بکار گرفته می شود اندازه گام کمی سازی مربوطه در این حالت 16 است. پس از کمی سازی بیشتر ضرایب در بالاترین زیر باند فرکانسی صفر می شوند تصویربازسازی شده و تبدیل ویولت معکوس در شکل (b) 7-2 و جدول 6-2 آمده است. به علت کمی سازی بازسازی با اتلاف است. 1- ضرایب با دامنه بزرگتر زدوتر ارسال می شوند. 2- بیتهای پرارزش تر ضریب حاوی اطلاعات کمتری هستند و زودتر ارسال میشوند. میتوان نشان داد که چگونه اینکدر SPIHT از این اصلها برای انتقال تدریجی ضرایب ویولت به دیکدر استفاده می کند فرض می شود تبدیل ویولت به تصویر اعمال شده و ضرایب Ci,j در حافظه ذخیره شده اند. این ضرایب بدون در نظر گرفتن علامتشان مرتب شده و اطلاعات مرتب شده در آرایه m قرار گرفته اند و عضو m(k) از این آرایه شامل مختصات (i,j) مربوط به آرایه Ci,j است و بنابراین برای همه مقادیر k داریم فرمول جدول 58-5 مقادیر فرضی 16 ضریب را نشان می دهد که هر کدام بعنوان یک عدد 16 بیتی نشان داده شده است. پرارزشترین بیت،‌بیت علامت است و 15 بیت باقیمانده مربوط به مقدار عدد هستند. اولین ضریب است که برابر با S1aci…r است. ضریب دوم نیز برابر با است و به همین ترتیب اطلاعات مرتب شده ای که اینکدر باید بفرستد دنباله m(k) است که به ترتیب زیر است: علاوه بر آن باید 16 علامت و 16 ضریب را به ترتیب ارزش بفرستد. یک انتقال مستقیم شامل ارسال 16 عدد است. این روش یک روش wastfull است. در الگوریتم SPIHT ، اینکدر وارد یک حلقه می شود که در هر تکرار حلقه دو گام انجام می شود: گام مرتب سازی و گام اصلاح. در اولین تکرار اینکدر عدد 2= L یعنی تعدد ضرایبی را که در فاصله فرمول قرار دارند می فرستد در ادامه دو جفت مختصات ( 3و 2 ) و (4 و 3) و علامت دو ضریب اول فرستاده می شود. این عملیات در نخستین مرحله مرتب سازی انجام می شود. این اطلاعات دیکدر را قادر به تخمین زدن ضرایب به ترتیبی که در ادامه آمده است می کند: ضرایب و بعنوان یک عدد 16 بیتی بصورت و 14 ضریب باقیمانده صفر بازسازی می شوند. این نشان می دهد که چگونه پرارزش ترین بیتهای مربوط به بزرگترین ضرایب ابتدا به دیکدر فرستاده می شوند. گام بعدی مرحله اصلاح می باشد که در تکرار اول انجام نمی شود. در تکرار دوم (حلقه دوم) اینکدر هر دو گام را انجام می دهد. در مرحله مرتب سازی عدد 4= L بعنوان تعداد ضرایبی که در فاصله فرمول قرار دارند در ادامة آن چهار مختصات ( 2و 3) ، (4 و 4) ، (2 و 1) و (1 و3) و علامت چهار ضریب فرستاده می شود. در گام اصلاح دو بیت b , a بعنوان چهاردهمین بیت با ارزش ضرایب مربوطه به حلقه قبلی فرستاده می شود. اطلاعات به دست آمده دیکدر را قادر به اصلاح ضرایب تقریبی که از مرحله قبل بدست آمده اند می کند و شش ضریب اول به شکل زیر در می آید: فرمول و ده ضریب باقیمانده تغییری نمی کند. 2-2-2) دسته بندی ضرایب در الگوریتم SPIHT به منظور کاهش تعداد تصمیم گیری ها در مقایسه میان بیتها و نیز کاهش حجم داده های خروجی در الگوریتم SPIHT از ساختار سلسله مراتبی استفاده می شود. در اینجا هدف اصلی دسته بندی ضرایب در مجموعه ها به گونه ای است که تعداد عضوهای یک مجموعه بی معنی حداکثر باشد و هر مجموعه معنی دار تنها یک عضو را شامل شود.

مشخصات فروشنده

نام و نام خانوادگی : علیرضا دهقان

شماره تماس : 09120592515 - 02634305707

ایمیل :iranshahrsaz@yahoo.com

سایت :urbanshop.ir

مشخصات فایل

فرمت : doc

تعداد صفحات : 23

قیمت : برای مشاهده قیمت کلیک کنید

حجم فایل : 38 کیلوبایت

برای خرید و دانلود فایل و گزارش خرابی از لینک های روبرو اقدام کنید...

پرداخت و دانلودگزارش خرابی و شکایت از فایل

مقاله بررسی ماتریس حسابداری اجتماعی در 20 صفحه ورد قابل ویرایش

مقاله بررسی ماتریس حسابداری اجتماعی
مقاله بررسی ماتریس حسابداری اجتماعی - مقاله بررسی ماتریس حسابداری اجتماعی در 20 صفحه ورد قابل ویرایش



مقاله بررسی ماتریس حسابداری اجتماعی در 20 صفحه ورد قابل ویرایش
1- مقدمه در نیم قرن گذشته، بسط و گسترش نظامهای حسابداری کلان و بخشی و الگوهای مرتبط به آنها در قلمروهای اقتصادی، اجتماعی و زیست محیطی با توجه به تحولات اقتصاد جهانی سه مرحله مشخص زیر را پشت سر گذاشته است: مرحله اول که حدود 10 سال طول کشید (دهه 1950 میلادی) کلیه نظامهای حسابداری کلان به شکل حسابهای ملی و بخشی در قالب نظام حسابداری جدول داده- ستانده و طیف وسیعی از الگوهای مرتبط به آنها اساساً در خدمت دیدگاههائی بودند که بعدها به دیدگاههای رشد محور معروف شدند (بانوئی، 1381). یکی از نارساییهای اساسی این نوع نظامهای حسابداری مذکور و دیدگاههای مرتبط به آن نادیده گرفتن مستقیم آمارهای اجتماعی (آمارهای مردمی) در کنار آمارهای نظام مند شده اقتصادی می باشد و بنابراین نباید انتظار داشت که الگوهای مرتبط به آنها انعطاف پذیری لازم و کافی را در تبیین عدالت اجتماعی داشته باشند (بانوئی، 1383). مرحله دوم یک دوره بیست ساله (1980-1960) را در بر می گیرد. در این دوره مشاهده می گردد که تلاشهای قابل توجهی در رفع نارساییها و اصلاح نظامهای حسابداری پیشین متناسب با دیدگاههای جدید توسعه اقتصادی با رویکردهای «نیازهای اساسی» و انسان محور صورت گرفته است. در این مورد حداقل چهار عامل اصلی نقش اساسی را داشته اند. یک: استقلال کشورهای در حال توسعه و مشکلات ساختاری اقتصادی و اجتماعی آنها. دو: ظهور دیدگاههای جدید توسعه اقتصادی با محوریت نیازهای اساسی و توسعه انسانی. سه: عدم هماهنگی بین نظامهای حسابداری کلان و بخشی موجود و الگوهای مرتبط به آن در تحلیلهای همزمان اقتصادی و اجتماعی. چهار: نادیده گرفته شدن ساختار اقتصادی و اجتماعی کشورهای در حال توسعه در نظامهای حسابداری موجود. زیرا که از نقطه نظر تاریخی، نظامهای حسابداری موجود، اساساً بر مبنای ساختار اقتصادی کشورهای پیشرفته طراحی شده اند [Stone, 1986]. به منظور رفع نارساییهای نظامهای حسابداری کلان و بخشی موجود، سازمان بین المللی، نظیر سازمان بین‌المللی کار و بانک جهانی و همچنین طیف وسیعی از پژوهشگران تلاش کردند یک نوع نظام حسابداری را طراحی نمایند که بعدها به نظام حسابداری میانه و الگوهای مرتبط به آن نیز به الگوهای میانه معروف گردید. جامع ترین و منسجم ترین نظام حسابداری میانه، ماتریس حسابداری اجتماعی می‌باشد که در مرحله سوم (دهه 1980 میلادی به بعد) به منظور تحلیلهای کمی آثار و تبعات سیاستهای اقتصادی و اجتماعی تعدیل ساختاری، خصوصی سازی و پیوستن به WTO پشتوانه آماری الگوی قابل محاسبه تعادلی عمومی قرار گرفته است. قبل از بررسی روش شناسی الگوی قابل محاسبه تعادل عمومی (که در فصل دوم ارائه خواهد شد) لازم است به ساختار کلی یک ماتریس حسابداری اجتماعی با توجه به ماکت ضمیمه مورد بررسی قرار گیرد. برای این منظور محتوای فصل حاضر در چهار محور کلی زیر سازماندهی می گردند. در محور اول سعی می شود تعریفی از ماتریس حسابداری اجتماعی ارائه گردد. بر مبنای تعریف وجه تمایز کارکرد ماتریس حسابداری اجتماعی و میزان پوشش آماری آن نسبت به نظامهای حسابداری کلان و بخشی موجود کاملاً مشخص می گردد. در محور دوم ضمن بررسی انواع حسابهای اصلی جامعه، آرایش حسابهای مذکور و تعامل منطقی آنها در قالب یک ماتریس حسابداری اجتماعی مورد بررسی قرار خواهد گرفت. در محور سوم، ابتدا بعضی از خواص اساسی آرایش حسابها در قالب یک ماتریس حسابداری نسبت به حسابهای سنتی T اشاره خواهد شد. سپس تفکیک پذیری هر یک از حسابهای اصلی به چندین زیر حساب برحسب واحدهای مشخص آماری مورد بررسی قرار گرفت. یکی از خصایص اصلی بکارگیری واحدهای مشخص آماری در طبقه بندی تفصیلی حسابهای اصلی در واقع تبیین بازارهای مختلف مانند بازار کالاها و خدمات، بازار تولید کنندگان، بازار مصرف کنندگان، بازار کار و غیره می باشند که در ماتریس حسابداری اجتماعی به صورت منطقی با یکدیگر در تعامل قرار می گیرند. بررسی کمی آثار و تبعات سیاستهای اقتصادی و اجتماعی بر روی بازارهای مذکور در واقع از اهداف اصلی الگوی قابل محاسبه تعادل عمومی به شمار می رود. در محور چهارم نظری اجمالی خواهیم داشت به حسابهای اصلی و زیر حسابهای منظور شده در ماتریس حسابداری اجتماعی سال 1380 اقتصاد ایران. 2- تعریف ماتریس حسابداری اجتماعی نظام‌مند کردن آمارهای اجتماعی (آمارهای مردمی) با آمارهای نظام‌مند شده کلان اقتصادی (حسابهای ملی) و بخشی اقتصادی (جدول داده- ستانده) براساس پشتوانه نظری اقتصاد خرد و کلان در یک یک ماتریس جبری را نظام حسابداری میانه و یا ماتریس حسابداری اجتماعی می نامند. از تعریف فوث می توان به دو کلی زیر رسید که میزان انعطاف پذیری ماتریس حسابداری اجتماعی را نسبت به سایر نظامهای حسابداری موجود آشکار می کند. الف- پوشش آماری اقتصادی و اجتماعی از تعریف فوق مشاهده می گردد که نظام حسابداری میانه هم به لحاظ پوشش آماری و هم به لحاظ کارکرد نسبت به نظامهای حسابداری کلان و بخشی گسترده تر است. زیرا که وظیفه کارکرد نظام حسابداری کلان به شکل نظام حسابهای ملی اساساً نظام‌مند کردن آمارهای کلان اقتصادی مانند مصرف کل جامعه، سرمایه‌گذاری کل جامعه، پس انداز کل، صادرات و واردات می باشد و حال آنکه وظیفه نظام حسابداری بخشی به شکل جدول داده- ستانده، نظام‌مند کردن آمارهای اقتصادی در سطح بخشهای مختلف اقتصادی است. در ماتریس حسابداری اجتماعی مشاهده می گردد که علاوه بر در نظر گرفتن آمارهای کلان و بخشی نظام‌مند شده اقتصادی حسابهای ملی و جدول داده- ستانده، آمارهای اجتماعی (آمارهای مردمی) را با توجه به ساختار اقتصادی، اجتماعی، سیاسی، فرهنگی و قومی هر کشور نیز پوشش می دهد. ب- منطق حسابداری و ربط آن به مفهوم اجتماعی براساس منطق حسابداری، جمع اقلام ورودی (جمع درآمد) هر حساب بایستی با جمع اقلام خروجی (جمع هزینه) آن حساب در یک دوره حسابداری با هم برابر باشند. نظام حسابداری کلان فقط می تواند برابری کل درآمد و کل هزینه جامعه را تضمین نماید (بانوئی و محمودی، 1380). کل درآمد (ارزش افزوده) به صورت پس مانده محاسبه می گردد. پس مانده به مازاد عملیاتی (درآمد سرمایه) بیشتر مصداق دارد تا جبران خدمات (درآمد نیروی کار). بنابراین، این نوع نظام حسابداری نمی تواند برابری هزینه و در آمد نهادهای جامعه مانند دولت، شرکتها و طیف وسیعی از گروههای اقتصادی و اجتماعی خانوارها را که بیش از سیصد سال پیش توسط گری گوری کینگ در قالب در سهم هر کس از درآمد ملی چقدر است؟ طراحی شده بود تضمین نماید. از طرف دیگر، نظام حسابداری بخشی داده- ستانده با توجه به حساسیت آن به ساختار تولید، برابری درآمد و هزینه بخشهای مختلف اقتصادی را به تفصیلی ترین شکل ممکن امکان پذیر می کند. درآمد عوامل تولید، به ویژه درآمدهای سرمایه و منابع طبیعی در قالب مازاد عملیاتی به صورت پس ماند محاسبه می شود و بدین ترتیب، درآمد امکان برابری درآمد و هزینه نهادهای جامعه همانند نظام حسابداری کلان (حسابهای ملی) در سطح کلان تضمین می گردد و در نتیجه پیوند بین جدول داده- ستانده و حسابهای ملی، حداقل در سطح کلان ایجاد می شود. اما این نوع نظام حسابداری، همانند نظام حسابداری کلان نمی تواند برابری هزینه و درآمد نهادهای جامعه، به ویژه طیف وسیعی از گروههای اقتصادی و اجتمای خانوارها را تضمین نماید. تحت چنین شرایطی نمی توان انتظار داشت که این نوع نظامهای حسابداری انعطاف پذیری لازم و کافی را در تحلیلهای عدالت اجتماعی داشته باشند. زیرا که اولاً برابری هزینه و درآمد نهادهای جامعه فقط در سطح کلان امکان پذیر می گردد. ثانیاً بعلت داشتن بار کلان، محدودیتهایی در طبقه بندی تفصیلی طیف وسیعی از گروههای اقتصادی و اجتماعی نیروی کار و خانوارها در این نوع نظام حسابداری وجود دارند و بدین ترتیب نمی توان مفهوم منطقی و واقعی اجتماعی، فرهنگی، سیاسی و قومی را در چنین نظامهای حسابداری پیدا نمود. بنابراین، واژه نظام حسابداری میانه که معمولاً به ماتریس حسابداری اجتماعی اطلاق می گردد [Van Bochove and Van Tuinen, 1986]. دارای این حسن است که امکان طبقه بندی تفصیلی طیف وسیعی از گروههای اقتصادی و اجتماعی نیروی کار را فراهم کرده و پیوند منطقی بین اقتصاد کلان، ساختار تولید و نهادهای جامعه مسیر می گردد. پیوند منطقی خود می تواند تصمین کننده برای درآمدها و هزینه های گروههای مختلف نیروی کار و خانوارها باشد [Ruggles & Ruggles, 1986, Ruggles, 1994]. 3- انواع حسابهای اصلی ماتریس حسابداری اجتماعی و تعامل منطقی آنها در قالب یک ماتریس حسابداری شاید یکی از محاسن اصلی ماتریس حسابداری اجتماعی نسبت به سایر نظامهای حسابداری موجود، انعطاف پذیری در طبقه بندی حسابهای اصلی آن باشد که در چارچوب یک ماتریس حسابداری اجتماعی بطور منطقی در تعامل با یکدیگر قرار می‌گیرند. معمولاً هر جامعه مستقل از درجه توسعه یافتگی دارای پنج حساب مشخص در سطح کلان می باشد. حساب تولید، حساب عوامل تولید، حساب نهادها، حساب انباشت و حساب دنیای خارج. جدول 1، ساختار کلی یک ماتریس حسابداری اجتماعی کلان حاوی پنج حساب را نشان می دهد. تعداد سطرها و ستونهای جدول چه در سطح کلان و چه در سطح حسابهای تفکیک شده همواره با هم برابر بوده بطوریکه جمع درآمد هر حساب بایستی با جمع هزینه حساب مذکور براساس منطق نظام حسابداری در یک سال مالی با هم برابر باشند. سطر و ستون 1 جدول مذکور به ترتیب نحوه فروش کالاها و خدمات (درآمد) تولید کنندگان و ساختار هزینه آنها را به نمایش می گذارد که در قالب حساب تولید منظور شده است. بعلاوه، سطر و ستون مورد بررسی ساختار نظام حسابداری بخشی به شکل جدول داده- ستانده در سطح کلان را آشکار می کند. جمع سطری آن تقاضای کل جامعه و یا جمع در آمد تولید کنندگان را نشان می‌دهد. تقاضای کل از دو قسمت مشخص تشکیل شده است. قسمت اول تقاضای واسطه بین بخشی است، درایه (1و1) که در آن مبادلات واسطه بین بخشهای مختلف اقتصادی (فرضاً کشاورزی، صنعت و خدمات) منظور می شود. این نوع داد و ستدها به ماتریس مبادلات واسطه بین بخشی معروف است که به نوعی بیانگرای ساختار اقتصاد و نشان دهنده بازار تولید کنندگان است (1). قسمت دوم تقاضای نهایی را آشکار می کند. قسمت مذکور نشان می دهد که کالاهای تولید شده توسط فعالیتهای تولیدی به چه صورت جذب تقاضای نهایی می‌گردند، درایه های (3و1، 4و1، 5و1). درایه (3و1) ارزش کالاها و خدماتی نهایی است که توسط طیف وسیعی از گروههای اقتصادی و اجتماعی خانوارها (2) و دولت مصرف می شوند. درایه مذکور بیانگر بازار داخلی مصرف کنندگان جامعه است. درایه های (4و1) و (5و1) به ترتیب باقی مانده اجزائی تقاضای نهایی است. بخشی از آن به منظور ایجاد ظرفیت تولیدی به صورت تشکیل سرمایه ثابت و همچنین به شکل موجودی انبار در بخشهای مختلف تشکیل می گردند درایه (4و1) بخش دیگر به صورت کالاها و خدمات به خارج از مرزهای کشور صادر می شوند، درایه (5و1). درایه های (3و1) و (4و1) به تقاضای نهایی داخلی معروف است و درایه (5و1) تقاضای خارجی است. اینکه تقاضای مذکور درایه (5و1) ماهیت واسطه ای و یا نهایی و یا ماهیت ترکیبی واسطه ای، نهایی دارند را نمی توان در نظامهای حسابداری موجود تبیین نمود (3). درایه مذکور ارتباط مستقیمی با بازارهای خارج و تئوریهای تجارت بین‌المللی دارد. یادداشتها: 1- برخلاف نظام حسابداری کلان (حسابهای ملی) و الگوهای مرتبط به آن، توانمندیها و انعطاف پذیری نظام حسابداری بخشی جدول داده- ستانده و نظام حسابداری میانه در قالب ماتریس حسابداری اجتماعی در این است که با توجه به بنیه‌های آماری هر کشور می توان بخشهای اقتصادی را برحسب ISIC به تفصیلی‌ترین شکل ممکن طبقه بندی و در قالب یک ماتریس سازماندهی نمود. این موضوع در بخش بعدی به تفصیل مورد بررسی قرار خواهد گرفت. برای اطلاع بیشتر به: بانوئی و عسگری (1382) مراجعه نمایید. 2- منظور از گروههای اقتصادی و اجتماعی خانوارها، در واقع تبیین الگوی مصرف خانوارها بر مبنای معیارهای مختلف طبقه بندی نظیر جغرافیایی، سرپرست، جنس، سواد، شاغل و غیر شاغل، قومی، مذهب، رنگ پوست و دارایی می باشد. بنظر می‌رسد که یکی از راههای شناخت بهتر از مفهوم اجتماعی در ماتریس حسابداری اجتماعی، بکارگیری این نوع معیارها است که معمولاً نمی توان در سایر نظامهای حساباری موجود بکار گرفت. بررسی این موضوع به بخش بعدی موکول خواهد شد. 3- با این حال در ماتریس حسابداری اجتماعی، سطر و ستون حساب دنیای خارج برحسب واحد آماری «نهاد» استفاده می گردد. بکارگیری انواع واحدهای آماری در هر یک از حسابهای اصلی جدول مذکور در بخش بعدی مورد بررسی قرار خواهد گرفت. 4- در نظامهای حسابداری کلان و بخشی متعارف موجود فرض بر این است که خانوارها دریافت کنندگان حقوق و دستمزد هستند. حال آنکه در عمل، همه اعضای یک خانوارها حقوق و دستمزد دریافت نمی کنند بلکه بعضی از اعضای یک خانوارها آنهم به صورت انفرادی حقوق و دستمزد دریافت می کنند. در ماتریس حسابداری اجتماعی سعی می شود با بکارگیری واحدهای مشخص آماری این نارسایی را اصلاح کند.

مشخصات فروشنده

نام و نام خانوادگی : مهدی حیدری

شماره تماس : 09033719795 - 07734251434

ایمیل :info@sellu.ir

سایت :sellu.ir

مشخصات فایل

فرمت : doc

تعداد صفحات : 20

قیمت : برای مشاهده قیمت کلیک کنید

حجم فایل : 17 کیلوبایت

برای خرید و دانلود فایل و گزارش خرابی از لینک های روبرو اقدام کنید...

پرداخت و دانلودگزارش خرابی و شکایت از فایل