فایلوو

سیستم یکپارچه همکاری در فروش فایل

فایلوو

سیستم یکپارچه همکاری در فروش فایل

مقاله بررسی کاربرد ریخته گری در سیستم های اندازه گیری(متالورژی پودر) در 86 صفحه ورد قابل ویرایش

مقاله بررسی کاربرد ریخته گری در سیستم های اندازه گیری(متالورژی پودر)
مقاله بررسی کاربرد ریخته گری در سیستم های اندازه گیری(متالورژی پودر) - مقاله بررسی کاربرد ریخته گری در سیستم های اندازه گیری(متالورژی پودر) در 86 صفحه ورد قابل ویرایش



مقاله بررسی کاربرد ریخته گری در سیستم های اندازه گیری(متالورژی پودر) در 86 صفحه ورد قابل ویرایش
فهرست مطالب ریخته گری و متالوژی پودر ? شکل دهی پوسته ? پخت نهایی و ریزش ? مراحل تهیه و ساخت قالب گری پوسته ای ? قالب گیری Invesment ) (بسته‌ای) ? پوشاندن مدل ?? قالب گیری فلز ?? مزایای پوشاندن قطعه ?? قالب ریخته گری فلزی ?? فلزقالب ریخته گری فلز ?? دای کست ثقلی ?? دای کست تحت فشار (فشار بالا) ?? قالب های ریخته گری تحت فشار ( دای کست ) ?? ویژگیهای مراحل مختلف قالب ریزی ?? متالوژی پودری ?? همگن سازی ?? محدودیت ها و ملاحظات طرح ?? اندازه گیر ?? تطبیق گرها ?? تطبیق گر مکانیکی ?? تطبیق گر با تسمه پیچشی ?? تطبیق گر الکترونیک ?? تطبیق گر نوری ?? روش های اندازه گیری فشار باد ?? روشهای اندازه گیری ?? لنزهای موازی ?? پروژه عدسی ?? انواع پرتو افکن ها ?? روشهای اندازه گیری ?? پروژه‌ای از نمودارهای پیچیده ?? کاربردهای اتوکولیماتور ?? اندازه گیری گوشه‌ها و زوایا ?? زاویه دکور: ( Dekkor ) 54 تراز دقیق ?? اندازه‌گیری سطح تمام شده ?? آرایش ?? سیستم اندازه‌گیری ?? روشهای اندازه‌گیری ?? وسایل ثبت الکتریکی ?? آزمایشات برای مرغک ماشین تراش ?? محور موازنه ماسوره با بخش متحرک ماشین تراش ?? گونیای متحرک لغزنده مقطع ( عرضی ) با محور ماسوره ?? محور موازنه انتهای بدنه تیغه همراه با بستر ?? آزمایش هایی برای ماشین های فرز افقی ?? میز متحرک موازی با تی اسلات مرکزی ?? گونیای محور ماسوره‌ای با تی اسلات مرکزی ?? میز گونیای شکل با استفاده از شیوه‌های عمودی ?? آزمایش‌های ماشین‌های سوراخکاری ?? حدود و انطباق‌ها ?? سیستم های محدودیات و تناسبها ( timit -&-fits ) 76 انحراف اساسی ?? تعیین نوع اندازه مبنا ?? حد اندازه‌گیری ?? تلرانسهای مقیاسی ( نمونه ) و دقت مجاز فرسایشی ?? ریخته گری و متالوژی پودر: مقدمه: ریخته گری در اشکال مختلف آن یکی از مهمترین فرایندهای شکل دهی فلزات می باشد. گرچه روش ریخته گری ماسه ای یک فرایند متنوع بوده و قادر به تولید ریخته با اشکال پیچیده از محدوده زیادی از فلزات می باشد، ولی دقت ابعادی و تشکیل سطح مختلف ساخته شده به این روش نسبتاً ضعیف می باشد. علاوه بر این ریخته گری ماسه ای عموماً برای حجم تولید بالا مناسب نمی باشد. به ویژه در جایی که ریخته ها احتیاج به جزئیات دقیق دارد، جهت از بین بردن این محدودیت ها فرایندهای ریخته‌گری دیگری که هزینه تولید کمتری هم دارند به وجود آمده اند، این روش شامل: (i) قالب گیری پوسته‌ای ( ii ) قالب‌گیری بسته‌ای (iii ) دای کاست یا ( ریخته گری حدیده ای که علاوه برفرآیندهای ریخته گری شکل دهی قطعات با استفاده از پودرهای فلزی نیز شامل این فصل می باشد. قالب گیری پوسته ای: این فرآیند را می توان به عنوان فرآیند گسترش داده شده ریخته گری ماسه ای دانست. اصولاً این روش از 2 نیمه مصرف شدنی قالب یا پوسته قالب از ماسه مخلوط شده با یک چسب مناسب جهت ایجاد استحکام در برابر وزن فلز ریخته شده، پخته شده است تشکیل می شود. شکل دهی پوسته: برای تشکیل پوسته ابتدا یک نیم الگوی فلزی ساخته می شود که معمولاً از جنس فولاد یا برنج می باشد و به صفحه الگو چسبانده می شود. یک الگوی راه گاه بر روی این صفحه تعبیه می شود. بر روی الگو یک زاویه 1 تا 2 درجه برای راحت جدا شدن ایجاد می شود. همچنین بر روی صفحه الگو دستگیره هایی برای جدا کردن صفحات ایجاد می شود. پخت جزعی: این مجموعه تا درجه حرارت در کوره یا توسط هیترهای مقاوم الکتریکی که در داخل الگو نصب شده اند گرم می شوند. از هر کدام از روشهای حرارت دهی که استفاده شده باشد صفحه الگو به جعبه های ماسه مخلوط شود. با چسب تر متوسط متصل می شود این جعبه سپس وارونه شده تا مخلوط ماسه و چسب بر روی الگوی حرارت دیده ریخته شود تا رزین یا چسب ذوب شده و باعث چسبیدن ماسه شود. پس از 10 تا 20 ثانیه را برگردانده تا یک لایه ( حدوداً نیمه پخته شده پوسته که به الگو چسبیده باقی بماند. پخت نهایی و ریزش: مجموعه صفحه الگو به همراه پوسته به داخل کوره براه شده تا پخته نهایی در درجه حرارت 300 الی در مدت زمان 1 الی 5 دقیقه صورت گیرد. زمان و درجه حرارت دقیق جهت این کار بستگی به نوع رزین مصرف شده دارد. پس از پخت پوسته از صفحه الگو جدا می شود هر دوی پوسته ها به این روش ساخته می شود. و قالب به هم چسباندن 2 نیمه توسط چسب یا کلمپ یا پیچ کامل می شود. قالب همگون آماده ریختن می باشد. در جاهایی که احتیاج به قسمتهای تو خالی می باشد. فنری قرار داده می شود و این ماسه مشابه روش ریخته گری ماسه ای انجام نمی شود. مراحل ساخت یک پوسته قالب در شکل (1. 2) نشان داده شده است. مراحل تهیه و ساخت قالب گری پوسته ای: در مقایسه با روش ریخته گری ماسه ای قالب گیری پوسته ای دارای مزایای زیر می باشد: a) دقت ابعادی بهتر یا تلرانس ( ). b) تکمیل سطح بهتر یا قابلیت دوباره تولید جزئیات دقیق تر. c) این فرآیند جهت کارکردهای غیر ماهر یا با مهارت کم می توانند استفاده کنند. اشکال این روش قسمت بالای الگوها و ماسه قالب گیری آنها می باشد. ( هر چند ) چون فرآیند نیمه مکانیزه می باشد زمان تولید یک پوسته قالب در مقایسه با ساخت یک قالب برای ریخته گری ماسه ای به صورت قالب ملاحظه ای کمتر می باشد. بنابراین این فرآیند جهت تولید ریخته اثر بالا که هزینه های اولیه در آن قابل جبران می باشد مناسب می باشد. قالب گیری Invesment ) (بسته‌ای) این روش ریخته گری قدمتی مانند ریخته گری ماسه ای دارد توسط قدیمیان جهت ساخت قطعات با جزئیات دقیق مانند دسته شمشیر و جواهرات مورد استفاده قرار گرفته است. در طول قرن ها این فرآیند محدود شده بود به مجسمه های برنزی و به درستی تنی فرآیندی است که امروزه در این حرفه مورد استفاده قرار می گیرد در پانزده سال اولیه این قرن بوده که قالب گیری Invesmemt جهت فرآیندهای صنعتی به ویژه در جابه جائی که ریخته ها با دقت ابعادی و تکمیل سطح بالا مورد نیاز است مناسب تشخیص داده شده. اساساً رویه فوم از مراحل ساختن و شکل دادن تشکیل شده است که از مواد نسوز (مقاوم در مقابل حوادث ) برای شکل دادن قالب پوشانده می شود. وقتی پوشانده سخت می شود فوم مذاب از حفره های قالب بیرون زده و از آهن مذاب پر می شود. زمانی که آهن مذاب به درجه انجماد رسید و قالب نسوز شکسته شد، چدن ریخته گری ظاهر می شود. I) مدل ساخته می شود. II) مدل پوشانده می شود. III ) آهن ریخته گری می شود. ساختن مدل برای رویه فوم به یک قالب دو نیمه ای لازم است که اساساً از یک یا دو روش زیر ساخته می شود. 1) زمانیکه انتظار دوام طولانی داشته باشیم، قالبها معمولاً از آهن، استیل، برنج، آلومینیوم ساخته می شوند. شکل معکوس قالب را در فلز تراش داده و آن را برای راحتی انقباض مقداری بزرگ می سازند، که مقدار دقت و مهارت در این مرحله خیلی بالاست. دقیقاً مانند مرحله ساخت قالبهای پلاستکی. 2) اگر دوام قالب مهم نباشد. از قالبهای ارزانی که با آلیاژ های نقطه ذوب پائین ساخته شده استفاده می شود. مراحل در شکل (2-2) نشان داده شده است. اولین لازمه قالب اصلی است که از برنج یا استیل ساخته شده است که از سطح صاف و صیقلی ساخته شده، برای انقباض موم مقداری اندازه آن را بزرگ می سازند. شکل تا عمق نصف قالب داخل ماسه فرو می رود و قالب استیلی دور بقیه شکل قرار داده میشود و با آلیاژهای بانقطه ذوب پائین 19 درجه سانتیگراد پر میشود. پس از انجماد شدن آلیاژ دو نیمه قالب از هم جدا می شود و ماسه اطراف آن عوض میشود با همان آلیاژ نقطه ذوب پائین مانند قبل. هر کدام از روشهای ساخت نوع قالب استفاده شده را معین می کند. و پس از انتخاب موم گداخته شده را داخل آن تزریق می کنیم و آن را مونتاژ می کنیم. بعد از انجماد موم قالب را دو نیمه کرده و موم شکل گرفته را از آن خارج می کنیم. پوشاندن مدل: به پوشش نسوزی که به روی شکل کشیده می شود که قالب را تکمیل کند و به آن پوشاننده می گویند. و در دو مرحله انجام می گیرد. پوشانده اولیه از رنگ کردن یا فرو بردن شکل در آبی که مخلوطی از سدیم سلیکات و اکسید کرومیک و آرد زارگون است تشکیل شده قبل از خشک شدن پوشش معمولاً مقداری پودر خاک نرم روی آن ریخته، برای پوشاندن و زمینه را برای پوشاندن نهائی فراهم می کند. بعد از خشک شدن یک قالب فلزی دور شکل پوشیده شده می گیرند و با پوشش دوم که معمولاً از موادی که آب با آلومینیوم گداخته شده یا خاک رس مذاب تشکیل شده پر می کنند. برای اطمینان مواد نسوز دور اولین لایه پوشش را فرا می گیرد و معمولاً قالب را تکان می دهند. قالب را در کوره با درجه حرارت کم قرار می دهند تا اینکه هم پوشش سخت می شود و هم موم ذوب می شود و از قالب خارج می شود که در دفعات بعد استفاده شود. این مراحل معمولاً 8 ساعت در دمای 95 درجه سانتیگراد طول می کشد. زمان و حرارت دقیقاً به نوع جنس موم بستگی دارد. سپس درجه حرارت تا 1000 درجه سانتیگراد افزایش می یابد. تا اینکه قالب کاملاً سخت شده و هیچگونه اثری از موم باقی نماند. قالب برای قالبگیری آماده است. (در شکل 4-2) قالب گیری فلز: زمانیکه قالب گرم است آنرا در کوره ای که با برق گرم می شود و مواد مذاب در آن موجود است قرار می دهند (شکل 5-2) در درجه حرارت مناسب کوره را بر عکس کرده تا مواد مذاب وارد قالب شود. برای اطمینان از اینکه مواد مذاب درون تمام حفره‌ها را پر کرده، معمولاً مواد را با فشار زیاد تزریق می کنند. بصورتیکه تمام جزئیات نشان داده شود. سپس بعد از سرد شدن (انجماد) قالب کوره به حالت اولیه برگردانده می شود و قالب برداشته می شود. سپس با چکش های باید و قلم مواد را از قالب خارج می کنند. مزایای پوشاندن قطعه: برتریهای این رویه بطور خلاصه در زیر توضیح داده شده است. الف ) این نوع قالب گیری دقت دقیقی دارد و با تلرانس 8/0+ میلی متر ممکن است. ب ) سطح صیقلی بسیار مناسبی دارد که دیگر به صاف کاری احتیاج ندارد و این در قالب گیریهائی که با فلز درست می شوند و سخت هستند مهم می باشد، برای عملیات دوباره صاف کاری (آلیاژهای کروم و نیکل) در پروانه توربینها استفاده می شود. برتریهای این رویه بطور خلاصه در زیر توضیح داده شده است. الف) این نوع قالب گیری دقت دقیقی دارد و با تلرانس 8/0 + میلی متر ممکن است. ب) سطح صیقلی بسیار مناسبی دارد که دیگر به صاف کاری احتیاج ندارد و این در قالب گیریهائی که با فلز درست می شوند و سخت هستند مهم می باشد، برای عملیات دوباره صاف کاری ( آلیاژهای کروم و نیکل ) در پروانه توربینها استفاده می شود. ج) از آنجائی که شکل موم دقیقاً مانند قالب نهائی است و تمام قسمتها مشخص می شود و به قطعات ریز دیگر احتیاجی نمی باشد. د) قطعات ممکن است در یک واحد درست بشوند. اگر از روش دیگر استفاده می گردید، ممکن بود قطعه از چند قسمت تشکیل شود و در کنار همدیگر مونتاژ شود. شکل اصلی این رویه این است که وسایل و هزینه تولید بسیار بالاست ولی چون تراشکاری اضافی احتیاج نمی باشد. مانند قالب گیریهای دیگر این هزینه سنگین با صرفه و مورد قبول است. قالب ریخته گری فلزی: در قالب گیری که توضیح دادیم از پوششهای مصرفی استفاده می کنیم. ولی قالبهای ریخته گری بر مبنای استفاده از قالبهای فلزی دائمی است که به اسم قالبها می باشند. از آنجائیکه طراحی و تولیدشان گران است و از ماشین های گران قیمت استفاده می شود. این روش زمانی اقتصادی است که در حجم زیاد تولید شود. فلزقالب ریخته گری فلز: فلز مورد استفاده برای قالب ریخته گری بطور کلی محدود به گروهی از فلزات غیر آهنی است، بدین ترتیب برای مدت زیادی عمر می کنند که نقطه ذوب آنها پایین تر از آلیاژها است. دو شرط در این است که باید سیالیت خوب داشته باشند و در ضمن در برابر «تردی داغ» هم حساس نباشد. تردی داغ عبارتی است که برای توصیف تردی قطعات ریختگی در دمای بالا به کار می رود آلیاژهای مورد استفاده شامل آلیاژهای پایه آلومینوم روی منیزیم قلع و سرب و به مقدار محدودی برنج و برنز هستند تا کنون رایج ترین فلزات مورد استفاده در این روش آلیاژهای پایه آلومینیوم به صورت زیر است: مس 4% سیلسیم 5% آهن 3% نیکل 2% و منیزیم 5/0% از قطعات ریخته گری تحت فشار آلومینیوم در جاهایی استفاده می شود که نسبت به استحکام به وزن بالایی موردنیاز است یک آلیاژ پایه روی معمولی شامل 4% آلومینیوم 7/2% مس و 3% منیزیم است این آلیاژ خواص ریخته گری خوبی دارد و به علاوه این مزیت را هم دارد که دمای ریخته گری آن در مقایسه با آلیاژهای پایه قلع و سرب محدود است کاربرد اصلی آنها در ساخت یاتاقانهای فشار پایین و قطعاتی دیگر است که در آنها استحکام یک فاکتور با اهمیت نیست آلیاژهای منیزیم که گاهی اوقات با نام تجاری Elektron شناخته می شوند در بین آلیاژهای فوق از همه سبکتر هستند و در جایی استفاده می شود که مسئله وزن و مقاومت در برابر خوردگی بهترین ملاحظات موجود باشند. فرآیند دای کست (ریخته گری تحت فشار) ریخته گری تحت فشار به طور عمده شامل دو نوع فرایند است. 1) ثقلی 2) فشار بالا (تحت فشار) لنزهای موازی فعالیت این لنز از فشرده سازی منبع نور در میله نوری موازی می باشد، این اندازه‌گیری پرتو افکن برای کار اهمیت بسیاری دارد که با تابش نور روشن شده توسط میله موازی نوری اندازه ثابتی را پرتو افکن می نماید. با مطالعه تصویر 12. 3 به این اصل پی خواهید برد. پروژه عدسی عمل کرد این نوع عدسی ها به این صورت است که یک تصویری از عملکرد وابسته و مناسب بزرگ سازی و توسعه در روی پروژه می باشد. نوع بزرگ سازی سودمند مفید آن شامل درصدهای یعنی از 10، 15، 25، 50، 100 می باشد در این پروژه عدسی نشان می دهد که در شکل 11. 3 که مشابه عدسی گفته شده می باشد که کفایت کننده آن می باشد. از نوعی از عدسی های نامناسب برای پروژه های برنامه نویسی استفاده می شود. هر چند که این نوع ممکن است احیاء کننده با ملاحظه توسط فرهنگ نوری باشد که در یک نوع سیستم کلی عدسی به کار می رود که در شکل 13. 3 نمایش داده می شود. انواع پرتو افکن ها در ابتدا استحکام و درست شدن پرتو افکن ها از وسایل موجود در کارگاه ها و در میان پیوستگی انجام می شد عدسی ها منبعی برای روشن سازی استفاده می شود. این پرده و عدسی ها ثابت بود و در روی دیوار که پروژه تصویری روی آن انجام می شد مطابق کار پرتو افکن ها ایجاد می شود. این سیستم یک اشکالی دارا بود که در وضعیت اصلی و در یک مساحت کم بزرگ سازی می کرد که برای دوربین مخصوص فواصل دور استفاده می شد. پرتو افکن های امروزی هر چند دارای یک نظام بسته کاملاً نوری بودند که در یک محفظه بسته مناسب وجود دارد. که این محفظه ممکن است عمودی یا از نوع افقی باشد که در شکل 14. 3 نمایش داده شده است. روشهای اندازه گیری روشهای اندازه‌گیری در این پروژه اندازه‌گیری یک روش ساده بوسیله بکار بردن قانون فولادها می‌باشد. این روش معقول قوانین فولادی می‌تواند بکار برده شود. برای اندازه‌گیری با دقت از mm 3/0 میلیمتر بکار می‌رود و اگر چه بوسیله این دقت کار به خوبی انجام شدنی می‌باشد که با زیاد کردن دورهای بزرگ سازی می‌توان آن را بهتر کرد. این بدان منظور است که برای مثال وقتیکه یک بزرگ سازی از ضریب15 را به کار می‌بریم وقت واقعی وابسته به آن انجام می‌شود تا بزرگی آن به 02/0، 15/3 میلیمتر برسد. برای راحتی و بالا بردن اعتبار معمولاً اندازه‌گیری خطی ابعاد متناسب با پایه انجام می‌شود. این اختراع واحد اندازه‌گیری برای این کار بود که در یک وسیله حرکت برای کنترل مقدار عددی در دو صورت هدایت کننده می‌باشد که در درجه یکدیگر را در بخش افقی مماس هم می کنند. این کار برد اولین موقعیت در مقابل یک ماخذ و منبع در به شکل درآوردن یک خط عرضی و مارپیچ روی پرده و مطالعه روی یک میکرومتر مناسب می‌باشد و در آن منبع یک میکرومتر دیگری مطالعه می‌شود که تفاوتهایی که در این دو مطالعه وجود دارد که نشانگر دقت ابعاد اندازه‌گیری گوشه‌ای از این ابعاد ممکن است از نظر مقدار مشابه روش قبلی باشد که در این دقت یک پرده سنجش را انجام داده که به طور واحد به کار برده می‌شود. که این کار با یک کنترل کننده مقدار میکرومتر یا درجه‌بندی فرعی تنظیم می‌شود که در شکل 15/3 نمایش داده می‌شود. پروژه‌ای از نمودارهای پیچیده: در بازرسی و بازدید پروژة نوری بکار برده شده و رسیدگی کردن اجزائی از شکل پیچیدة e.g که شکل ابزار و نوعی نمودار فرانوری می‌باشد. این کار اغلب دست یابی بوسیله سنجش نمودار با یک الگو می‌باشد. این آمادگی مخصوص بوسیله بزرگی نقشهای نمودار می‌باشد که ( متناظر با بزرگ‌سازی نوری ) وابسته به یک فیلم و اشکال شفاف کننده می‌باشد.که معمولاً نصب می‌شود در روی شیشه برای محافظت از نور نصب می‌شود و عموماً وقتی که این منبع در جلو قرار می‌گیرد انجام می‌شود و تلرانس اجزاء متعلق به آن نمایش داده می‌شود. بنابراین ساختن آن ممکن است با تاریخچه دایر کردن آن یکی شود. اگر اجزاء درون آن در اندازه مخصوص ساخته شده باشد وقتی که پروژه نوری که در شکل وجود دارد مانند پیچاندن باریک خطی می باشد که این کار بوسیله هجوسازی اشکال انجام می‌شود که در شکل 16/3 نمایش داده می‌شود که شکل مورد نظر به دو صورت a b می‌باشد که هر دو شکل در صفحة بعد نمایش داده می‌شود. روشن است که یکی از مؤثرترین هم تراز کننده یک ریسمان مارپیچ است که این کار با هجوسازی ممکن است. معمول‌ترین کار قبول مدل این پروژه می‌باشد. که اول سنجش شکل خارجی نقطه اثر که از خارج آن اندازه‌گیری می‌شود. این هجوسازی یک نوع بلعیدگر و همچنین که این حاشیه و لبه پوشیده می‌شود. بعد از این که نشان دادن شکل ممکن شد برای سیمای درونی نقاط و تولید نقاط و پیدا کردن صحیح نمودار می‌باشد. شکل درونی هر یک از اشکال باریک نمی‌تواند بصورت یک پروژه مستقیم باشد. تنها راه ممکن پیروزی این مسئله در ساختن یک پروژة صحیح و کلی از همان راه برای اشکال باریک می‌باشد. در این روش از اشکال باریک مهم‌ترین عمل آن است که در بخش خارجی آن را غیر جدی گرفته شود و بی‌توجهی همچنین به کوچکترین شکل خطری از تعریف آن می‌باشد.

مشخصات فروشنده

نام و نام خانوادگی : مهدی حیدری

شماره تماس : 09033719795 - 07734251434

ایمیل :info@sellu.ir

سایت :sellu.ir

مشخصات فایل

فرمت : doc

تعداد صفحات : 86

قیمت : برای مشاهده قیمت کلیک کنید

حجم فایل : 1124 کیلوبایت

برای خرید و دانلود فایل و گزارش خرابی از لینک های روبرو اقدام کنید...

پرداخت و دانلودگزارش خرابی و شکایت از فایل

مقاله بررسی فلزات سنگین در 17 صفحه ورد قابل ویرایش

مقاله بررسی فلزات سنگین
مقاله بررسی فلزات سنگین - مقاله بررسی فلزات سنگین در 17 صفحه ورد قابل ویرایش



مقاله بررسی فلزات سنگین در 17 صفحه ورد قابل ویرایش
فهرست مطالب فلزات سنگین ? ?-نقش بهداشتی فلزات سنگین ? ?- شناسایی عوامل آلوده کننده آبها از نظر فلزات سنگین ? ?- فلزات سنگین (اثرات- منابع- کاربرد) ? ?-?- کروم ?? ?-?- کبالت ?? ?-?- کادمیوم ?? ?-?- سرب ?? ?-?- مس ?? ?-?- وانادیوم ?? ?-?- روی ?? ?-?- آرسنیک ?? ?-?- جیوه ?? ??-?- نیکل ?? ??-?- نقره ?? ??-?- آلومینیم ?? ??-?- آهن ?? منابع ?? فلزات سنگین در کتب و مراجع گوناگون تعاریف و تفسیرهای مختلفی از فلزات سنگین به عمل آمده است. علت اطلاق لفظ سنگین، وزن مخصوص بالاتر از 6 گرم بر سانتیمتر مکعب می‌باشد، که این فلزات دارا هستند. این فلزات دارای نقاط ذوب و جوش بسیار متفاوتی می‌باشند. به طوری که در این گروه جیوه Hg پائین‌ترین نقطه جوش یعنی oc87/38- و مولیبدن (Mo) بالاترین نقطه جوش یعنی c 0 4612 را دارا می‌باشد. اکسید فلزات سنگین در جدول تناوبی هرچه به طرف گازهای نادر پیش برویم، در طبیعت پایدارتر است، و در سیستم بیولوژی با مولکول‌های آلی ایجاد کمپلکس‌های پایدار می‌نماید. حضور برخی از این عناصر از نظر تغذیه حائز اهمیت می‌باشد. در حالی که در شرایط مشابه حضور برخی از آنها در بافت زنده مضر می‌باشد. نیاز پستانداران به روی و مس به مراتب بیشتر از ید و سلینیوم و غلظت آهن و روی در بافت‌های حیوان ضروری‌تر از منگنز و کبالت می‌باشد. برخی عناصر غیر ضروری مانند برم (Br) و ربیدیوم (Rb) و سیلیکون در مقایسه با فلزات کمیاب ضروری با غلظت بالا در بافت نرم و خون حضور دارند. فلزات سنگین نظیر آهن- روی و مس برای تعداد زیادی از آنزیم‌ها در حکم یک کانون فعال هستند. این فلزات در غلظت‌های پائین در بدن یافت می‌شود، ولی اثر فوق‌العاده‌ای در بدن دارند. فلزات سنگین نظیر نقره (Ag)، کادمیوم (Cd)، قلع (Sn)، جیوه (Hg)، سرب (Pb)، و فلزاتی که خاصیت الکترونگاتیویته زیادی دارند مانند مس، نیکل و کبالت، میل ترکیبی شدیدی با گروه‌های آمینی و سولفیدریل دارند. آنزیم‌ها به وسیله این فلزات متلاشی شده و قدرت آنزیمی خود را از دست می‌دهند. به علاوه این فلزات در عمل سوخت و ساز بدن وارد شده و عمل متابولیسم را مختل می‌نمایند. درجه سمی بودن فلزات سنگین را از میزان الکترونگاتیویتة آنها می‌توان طبقه بندی نمود، که به این ترتیب با پایداری کمپلکس‌های مشتق شده از این فلزات هماهنگی می‌کند. طبقه‌بندی این فلزات به صورت زیر می‌باشد. Hg- Cu- Sn- Pb- Ni- Co- Cd- Fe- Zn- Mn- Mg- Ca- Sr- Cr 1-نقش بهداشتی فلزات سنگین در دهه گذشته تحقیقات زیادی بر روی اهمیت فلزات سنگین در سیستمهای بیولوژیکی انجام گرفته است. علت این بررسی‌ها افزایش نگرانی کسانی بوده است، که در مناطق صنعتی زندگی می‌کنند، و در تماس دائمی و مستقیم با این عناصر بوده‌اند، که امکان اثر بیولوژیکی محیط بر روی اینها وجود داشته است. در حقیقت نقش عناصر جزیی و اثرات مفید و مضر آنها بر روی سیستم بیولوژیکی انسان از اهمیت خاصی برخوردار است. از 90 عنصر شیمیایی که در پوسته زمین یا اتمسفر وجود دارد، فقط 12 تای آنها به میزان زیادی در بدن انسان وجود دارند که عبارتند از: Cn- Fe- Mg- Cl- Na- S- K- P- N- H- C- O از این عناصر چهارتای اول 96% وزن کل ارگان زنده را تشکیل می‌دهد و بقیه 6/3% آن را شامل می‌گردد، و حدود 70 عنصر باقیمانده 4/0 بقیه را شامل می‌شوند، که اینها عناصر جزئی می‌باشند. چنین بنظر می‌رسد، که از این 70 عنصر 14تای آنها برای متابولیسم بدن انسان ضروری می‌باشند. جورج موریسون عناصر جزئی را به سه دسته تقسیم می‌کند. الف) آنهایی که برای جانوران عالی ضروری می‌باشند. ب) آن دسته از عناصر که ضرورت آنها ممکن می‌باشد. ج) آن دسته از عناصر که ضروری نمی‌باشند. عناصر ضروری برای متابولیسم بدن انسان عبارتند از: کرم، کبالت، مس، فلوئور، آهن، ید، منگنز، مولیبدن، نیکل. 2- شناسایی عوامل آلوده کننده آبها از نظر فلزات سنگین بطور کلی آبها به چهارطریق ممکن است به فلزات سنگین آلوده شوند. 1- هوا 2- خاک 3- فاضلاب‌های صنعتی- خانگی 4- زباله (شیرابه زباله) پس آبهای صنعتی- مواد زائد حاصل از فعالیت‌های روزمره زندگی، (زباله) و تخلیه انواع فضولات حیوانی و انسانی به داخل آبهای سطحی و زیرزمینی، سهم مهمی در ایجاد این نوع آلودگی‌ها را، در آب دارا هستند. احتمال آلوده شدن آبها بخصوص آبهای سطحی از طریق هوا، (هنگام بارندگی بویژه بارندگی‌های شدید بسیار بالاست). مقادیر زیادی از انواع آلوده کننده‌ها، نظیر مواد موجود در گرد و غبار و گازهای ناشی از فعالیت‌های صنعتی در باران حل شده، و در نتیجه این آلودگیها به آبهای پذیرنده وارد می‌گردد. (به علت PH اسیدی باران، برخی از عناصر مانند کادمیوم در آب باران حل می‌شود). خاک یکی دیگر از منابع آلودگی آبها می‌باشد. جنس خاک نقش موثری در آلودگیهای آب می‌تواند داشته باشد. به عنوان مثال آب پس از عبور از لایه زیرزمینی، که جنس آن سنگ گالن می‌باشد؛ به علت وجود سرب در آن، در انتقال سرب پذیرنده نقش دارد؛ و به علت استفاده از آفت‌کش‌ها در کشاورزی و کاربرد کودهای شیمیایی، مقادیر معتنابهی از فلزات سنگین می‌توانند وارد آبها شوند. کیفیت آبها در اثر وجود مواد آلوده کننده بر هم خورده، و در این میان تاثیر مواد آلوده کننده، مانند فلزات سنگین بیشتر می‌باشد . 8-3- آرسنیک آرسنیک شبه فلزی است که در طبیعت فراوان می‌باشد و می‌تواند مسمومیت حاد یا مزمن در انسان ایجاد کند. تا کنون هیچ یک از ترکیبات آرسنیک بعنوان ماده غذایی لازمی شناخته نشده است. معهذا این ماده را سابقاً بعنوان محرک رشد به غذای دامها اضافه می‌کردند. آرسنیک به طور طبیعی در محیط مادی یافت می‌شود، معمولاً وجود آن در طبیعت به شکل ترکیب با گوگرد و فلزات دیگری مانند مس، کبالت، سرب، روی و غیره می‌باشد. آرسنیک در بسیاری ازفرآیندهای صنعتی مانند سرامیک سازی، صنایع چرم و دباغی مصرف می‌شود. سازندگان حشره‌کش‌ها و سموم دفع آفات نباتی جزء اصلی‌ترین مصرف کنندگان آرسنیک محسوب می‌شوند. املاح آرسنیک به سرعت از طریق دستگاه گوارش جذب می‌شوند. آرسنیک از طریق ریه و پوست نیز جذب می‌گردد. این موضوع به اثبات رسیده که آرسنیک 3 ظرفیتی سمی است، و آرسنیک 5 ظرفیتی سمیّت چندانی ندارد. احتمال اینکه آرسنیک ایجاد سرطان نماید مورد تردید است. و اثر سرطان زا در روی پوست می‌تواند داشته باشد. حداکثر غلظت مجاز آرسنیک در آب آشامیدنی 5% میلی‌گرم در لیتر می‌باشد. 9-3- جیوه بوسیله نمکهای محلول خود یکی از سمی‌ترین فلزات سنگین می‌باشد. 1 تا 2 گرم کلرور جیوه کشنده است. با وارد شدن جیوه به معده در دستگاه گوارش اختلال بوجود می‌آید. ناراحتی‌های عصبی و ضایعات کلیوی نیز از عوارض آن است. با عمل میکروبی که در لجن صورت می‌گیرد میتل جیوه تولید می‌شود که بسیار سمی است و باعث ضایعات عصبی شده و حافظه را مختل و بالاخره دیوانگی و جنون و مرگ را موجب می‌شود. حتی به مقدار کم نیز اختلالات کروموزومی به بار می‌آورد. مهمترین منابع بزرگ جیوه در محیط گازهایی است، که از پوسته زمین به طور طبیعی خارج می‌گردد. علاوه بر این فعالیت‌های صنعتی نیز به طور غیرمستقیم بر میزان جیوه محیط می‌افزایند. از سال 1500 جیوه برای درمان بیماری سفلیس استفاده می‌شده است. مهمترین زمینه‌های کاربرد جیوه عبارتند از: کارخانجات کلر، که کلروهیدروکسید سدیم تولید می‌کنند و در رنگهای نگاهدارنده رنگ دانه در دندانسازی و در کشاورزی (خصوصاً به عنوان چاشنی بذر)، کاربرد دارد. جذب جیوه معدنی، از طریق تنفس بخارات جیوه و با تماس طولانی با فلز جیوه، صورت می‌گیرد. در سال 1960، در بین اعضاء خانواده ماهیگران شهر ساحلی میناماتای ژاپن، بیماری عجیبی 111 نفر را علیل کرد، و 43 نفر از آنان را از بین برد. علت این بیماری، تخلیه فاضلاب صنعتی به رودخانه میناماتا، بعد از سال 1958 بود. در سال 1945 در نیگاتا ، به علت خروج جیوه از یک کارخانه صنعتی، اپیدمی دیگری از همین بیماری (میناماتای) به وجود آمد. گیاهان نسبت به ترکیبات سمی جیوه حساس نیستند، اما مصرف جیوه توسط پرندگان، موجب اختلال در تغذیه و کاهش رشد آنان می‌گردد. حداکثر غلظت مجاز جیوه در آب آشامیدنی 001/0 میلی‌گرم در لیتر توصیه شده است. 10-3- نیکل نیکل در همه جا موجود است، و خاکهای عادی 10-100 میلی‌گرم در کیلوگرم نیکل دارند. حضور این فلز، در تجهیزات خط تولید فرایندهای مواد غذایی، باعث آلودگی مواد غذایی به این عنصر می‌گردد. نیکل عنصر نسبتاً غیر سمی می‌باشد. ازدیاد ناگهانی آن در آب، دلیل آلودگی به فاضلاب صنعتی است. برای حداکثر غلظت مجاز نیکل در آب آشامیدنی، مقدار دقیقی به عنوان رهنمود داده نشده است. 11-3- نقره عنصر نسبتاً کمیابی است که حلالیت آن در آب کم و بین 1/0 تا 10 میلی‌گرم در لیتر می‌باشد که این مقدار بستگی به PH و غلظت کلرید موجود در محلول دارد. در پوسته زمین، غلظت نقره در حدود 1/0 میلی‌گرم، در کیلوگرم می‌باشد. املاح نقره به علت دارا بودن خاصیت میکروب‌کشی، به عنوان یک عامل پیشگیری در ضدعفونی آب، مورد استفاده قرار می‌گیرد. نقره ممکن است، باعث آرژیریا شود. که یک بیماری دائمی است و از علائم آن، مایل به قهوه‌ای شدن پوست و چشمان است، و شخص مانند اشباح به نظر می‌رسد. حداکثر غلظت مجاز نقره در آب آشامیدنی، 5% میلی‌گرم در لیتر است.

مشخصات فروشنده

نام و نام خانوادگی : مهدی حیدری

شماره تماس : 09033719795 - 07734251434

ایمیل :info@sellu.ir

سایت :sellu.ir

مشخصات فایل

فرمت : doc

تعداد صفحات : 17

قیمت : برای مشاهده قیمت کلیک کنید

حجم فایل : 17 کیلوبایت

برای خرید و دانلود فایل و گزارش خرابی از لینک های روبرو اقدام کنید...

پرداخت و دانلودگزارش خرابی و شکایت از فایل

مقاله بررسی فلز مس و کاربردهای آن در 16 صفحه ورد قابل ویرایش

مقاله بررسی فلز مس و کاربردهای آن
مقاله بررسی فلز مس و کاربردهای آن - مقاله بررسی فلز مس و کاربردهای آن در 16 صفحه ورد قابل ویرایش



مقاله بررسی فلز مس و کاربردهای آن در 16 صفحه ورد قابل ویرایش
فهرست مطالب ?- خلاصه ? ?- مقدمه ? ?-?- الکترولیز ? ?-?- اندازه گیری پلاریزاسیون ? ?-?- آزمایش رسوب ? ?- نتایج ? ?-?- غلظت دی اکسید سولفور ? ?-?- غلظت مس ?? ?-?- غلظت اسید سولفوریک ?? ?-?- دما ?? ?-?- چگالی جریان ?? ?-?- جایگزینی آند ?? ?-?- رفتار پلاریزاسیون ?? ?-?-?- رفتار پلاریزاسیون آندی ?? ?-?-?- پلاریزاسیون کاتدی ?? ?-?- جهت یابی کریستالوگرافی ?? ?-? – شکل شناسی ( مورفولوژی ) رسوب ?? ? ـ نتیجه گیری ??
1- خلاصه مس از محلول اسیدی سولفات در حضور اسید سولفور مس و یا استفاده از آندگرافیتی بررسی شده است . تأثیرات متغیرها نظیر غلظت دی اکسید سولفور ،‌‎ غلظت مس، غلظت اسید سولفوریک ، دانسیته جریان و دما بر روی ولتاژ پیل ، پتانسیل آندی ، توان مصرفی، بازدهی جریان ، کیفیت رسوب ، مورفولوژی سطح ، جهت یابی کریستالی و نوع پلاریزانسیون نیز مورد مطالعه قرار گرفته است . سایر مواد بکار رفته در آند مانند و ti و ti-Iro2 نیز برای بررسی تأثیراتشان روی فعالیت الکترولیت در اکسیداسیون so2 و نیز کیفیت رسوب انجام شده است . کاتدی مستطیل شکل از جنس فولاد زنگ نزن با ابعاد نول و عرض و به ضخامت 2cm برای مس بکار برده شده است . افزایش غلظت so2 ، غلظت مس ، غلظت اسید سولفوریک و دما ، توان مصرفی را کاهش می دهند . این متغیرها تأثیری بر روی بازدهی جریان رسوب گذاری مس ندارند . حضور so2 در الکترولیک مس ، منحنی های پلاریزاسیون آندی و کاتدی را تغییر می دهد . علاوه بر این باعث تغییر در جهات کریستالی در مورفولوژی سطح مس رسوب کرده نیز قابل مشاهده است . مشخص شده که توان مصرفی مینیمم و بازدهی جریان ماکزیمم و مورفولوژی بهبود یافتة ‌سطح با استفاده از آند گرافیکی ، قابل دلتایابی است. 2- مقدمه در طی 20 سال گذشته استخراج مس دستخوش تحولات بسیاری قرار گرفته اند . فرآیندهای پیرو متالوژی و هیدورمتالوژی پیشرفت کرده اند و روشهای بدیعی برای انجام این فرآیندها گزارش شده است. مشکل اقتصادی تکنولوژی در ارتباط با so2 از مس توسط فرآیندهای پیروستالورژیکی سبب پیشرفت فرآیندهای هیدروستالورژیکی جهت بازیافت مس از کنساتره های بیان گشته است . عملیات عمده ای که در پروسه های هیدرومتالورژی بکار می روند شامل تشویه ، لیچینگ و می باشند. در سالهای اخیر افزایش قابل توجهی در تولید مس به روش صورت گرفته است . ایراد اصلی این عملیات ، نیاز آن به انرژی فراوان جهت مس در مقایسه با انرژی مصرفی e.firing مس می باشد. این پروسه تقریباً نیاز به 8 تا 10 برابر توان مصرفی در e.fin دارد . این نیاز بالا در انرژی مس سبب انجام تحقیقاتی به منظور کاهش انرژی مصرفی شده است . یکی از راههای ارائه شده ، جایگزین کردن یک واکنش آندی انتخابی به جای واکنش احیاء اکسیژن است . واکنش آندی انتخابی که ممکن است بکار رود بصورت زیر است : 1 ) 2 ) 3 ) 4 ) واکنشهای فوق به غیر از واکنش 1 ،‌ در پتانسیل های پایین تری نسبت به پتانسیل احیاء اکسیژن می شوند . با این وجود ، واکنش 4 جاذبه بیشتری برای محققین داشته است . اکسیداسیون محلول در آندهای کربین و گرافیتی توسط محققین متعددی بررسی شده است. Wiesener به این نکته اشاره کرده است که آندهای کربنی بار یاکسیداسیون آندی مناسب نیست. Pace و stauter نیز دریافتند که توان مصرفی برخلاف مقدار بدست آمده در روشهای متدوال ، به ازای یک kg از مس می باشد. Bharucha ، موفق به طراحی نوعی آندگرافیتی جهت مس شد . به این صورت که مخلوطی از هوا و 12% الی 15% بر روی یک گرافیت آندی متخلخل Spargod شد . البته این روش بالاتر از محدودة مشخصی در مقیاس آزمایشگاه کاربرد ندارد . امروزه تلاش زیادی جهت بررسی تأثیرات اسید سولفوریک بر روی مس از الکترولین سولفاتی انجام می شود . اسید سولفوریک به عنوان منبع بکار می رود زیرا استخراج محیطی که عمدتاً به صورت اسید سولفوریک می باشد و انتقال آن به پیل مس جهت تغییر آن به و کاهش هم زمان انرژی مصرفی ،‌ سبب سهولت بیشتری می شود . ترکیبات متداول دیگری نظیر و برای جلوگیری از تشکیل سولفاتهاشان در پیل مس بکار نمی رود زیرا ممکن است در مس تأثیر بگذارند یک آند گرافیتی جهت بررسی تأثیرات اسید سولفوریک بر روی ولتاژ پیل ،‌ توسط سر پوشی از جنس شیشه پلاستیکی و نیز تدارکات لازم به منظور داخل کردن آندو کاتد ،‌ پوشیده شده است . کادهای بکار رفته مستطیل شکل و از جنس فولاد زنگ نزن هستند و ابعاد زیر را دارند : طول ، عرض و ضخامت 2mm . جهت اتصال الکتریکی به کاتد نوارهایی با جنس مشابه و با ابعاد زیر بکار می روند: طول cm 11 و عرض cm 1 و ضخامت mm 2 که این نوارها به مرکز لبه فوقانی صفحات مستطیل شکل ، جوش خورده اند . آندهای بکار رفته متشکل از گرافیت ، ، ، Ti و ti-Iro2 می باشند . آندهای بکار رفته نیز ،‌ ابعادی مشابه کاتد دارند . یک الکترود کالومل به عنوان الکترود مرجع بکار می رود که یک سوکننده جریان برق می باشد و با ماکزیمم قدرت ، کالومل به عنوان الکترود مرجع بکار می رود که یک سو کننده جریان برق می باشد و با وارد کردن ولتامترهایی دقیق در مدار، اندازه گیری می شوند ، یک ترمستات نیز جهت فراهم کردن دمای مورد نیاز الکترولیت بکار می رود . محلول الکترولیک از شناساگر سولفات مس اسید سولفوریک ، اسید سولفوروس و آب مقطر تشکیل شده است. -3- غلظت اسید سولفوریک تأثیر غلظت اسید سولفوریک در طی مس در محدوده بررسی شده است و تأثیرات آن بر روی پتانسیل آندی و ولتاژ پیل در جدول 1 آروده شده است. ولتاژ پیل و پتانسیل آندی با افزایش غلظت اکسید تا کاهش می یابند . اگر چه کاهش در ولتاژ اندک است . تغییرات غلظت اسید سولفوریک تأثیر قابل توجهی بر روی بازدهی جریان و توان مصرفی ندارد. نتایج مشابهی در این باره توسط vinshra و coopen بدست آمده است . آنها ،‌ مس را در محلولهایی حاوی غلظت بالای اسید سولفوریک در حدود می کنند و تنها کاهش جزئی در بازدهی جریان حاصل می شود. 4-3- دما تأثیرات دما در حین مس در محلولی حاوی آهن و ، توسط coopen بررسی شده است وی نتیجه می گیرد که دما نقش مهمی در تعیین کیفیت رسوب کاتدی بازی می کند . در این بررسی ، تأثیر دما در محدودة 30 تا 60 درجه سانتیگراد بررسی شده است . ولتاژ پیل و پتانسیل آندی با افزایش دمای حوضچه کاهش می یابند ( شکل 4 ) . هیچ تغییری در بازدهی جریان در محدوده دمای ذکر شده مشاهده نمی شود و حدود 98% کل می باشد . شکل 5 تأثیر دما را روی توان مصرفی نشان می دهد . با افزایش دما کاهش قابل توجهی در توان مصرفی مشاهده می شود . توان مصرفی تقریباً بصورت خطی با افزایش دمای حوضچه کاهش می یابد . مشخص شده که دمای بالاتر کیفیت رسوب را بهبـود می بخشد و این مطابق با نتایج گزارش شده توسط Coopon می باشد. 5-3- چگالی جریان تغییرات در چگالی جریان در حین مس در محدودة 100 الی 300 بررسی شده است و تأثیرات آن بروی ولتاژ پیل ، پتانسیل آندی و توان مصرفی و بازدهی جریان مشاهده شده است . شکل 6 تأثیرات دانسیته جریان را بر روی ولتاژ پیل و پتانسیل آندی نشان می دهد . نتایج فوق نشان می دهند که ولتاژ پیل و پتانسیل آندی در حین مس با افزایش دانسیته جریان ، افزایش می یابند . افزایش در ولتاژ پیل و پتانسیل آندی ممکنست به جهت افزایش پلاریزاسیون آندی و کاتدی نیز باشد . توان مصرفی با افزایش دانسیته جریان افزایش می یابد ( شکل 7 ) ، بازدهی جریان ثابت می ماند (98%) تا محدود 200 و رسوبات پودری با افزایش دانسیته جریان تشکیل می شوند . طبق گزارش misha وcoopen ، این مسئله ممکنست بخاطر تجاوز دانسیته جریان از حد بحرانی باشد. 6-3- جایگزینی آند جنس آند ،‌ نقش مهمی در اکسیداسیون الکتریکی دارد . تأثیرات جنسهای مختلف آند بر روی مس در حضور بررسی شده اند . نتایج در جدول 2 ، در حضور و غیاب جهت مقایسه آورده شده است . شکل 8 ، ولتاژ پیل را برای 4 آند مختلف و و Ti – Iro2 و گرافیت ،‌ نشان می دهد . در این آزمایشها در دمای انجام شده است. از آنجا که در همه آزمایشها ،‌ ترکیب حوضچه ،‌ دما ، فاصله الکتروها ، دانسیته جریان و جنس کاتد ،‌ ثابت نگه داشته شده است ،‌ تغییرات مشاهده شده در ولتاژ پیل ممکنست بخاطر جنس های مختلف آند باشد .

مشخصات فروشنده

نام و نام خانوادگی : مهدی حیدری

شماره تماس : 09033719795 - 07734251434

ایمیل :info@sellu.ir

سایت :sellu.ir

مشخصات فایل

فرمت : doc

تعداد صفحات : 16

قیمت : برای مشاهده قیمت کلیک کنید

حجم فایل : 55 کیلوبایت

برای خرید و دانلود فایل و گزارش خرابی از لینک های روبرو اقدام کنید...

پرداخت و دانلودگزارش خرابی و شکایت از فایل

مقاله بررسی آلیاژهای نانوکریستال ALTI در 25 صفحه ورد قابل ویرایش

مقاله بررسی آلیاژهای نانوکریستال AL+TI
مقاله بررسی آلیاژهای نانوکریستال AL+TI - مقاله بررسی آلیاژهای نانوکریستال ALTI در 25 صفحه ورد قابل ویرایش



مقاله بررسی آلیاژهای نانوکریستال AL+TI در 25 صفحه ورد قابل ویرایش
مقدمه : آلیاژهای آلومینیوم جزء مواد پرکاربرد درصنایع هوافضا و اتومبیل می باشند . زیرا این آلیاژها دارای خواص خوبی مانند مقاومت به خوردگی ، شکل پذیری و خواص مکانیکی خوب هستند ولی آلیاژهای آلومینیوم تجاری در دمای بالاتراز 200-300?C بطورمحسوسی استحکامشان را از دست می دهند و درکاربردهای ساختمانی ناپایدار و غیرقابل استفاده می شوند که این دما به ترکیب و ساختار آلیاژ بستگی دارد . تحقیقات گسترده در مورد کاربردهای آلیاژهای آلومینیوم بواسطه استحکام دهی بالای آنها در دمای 600?C توسعه پیدا کرده است .[27] آلیاژسازی مکانیکی (Mechanical Allay) MA آلیاژهای Al-Ti انتخاب خوبی برای اکثر کاربردها هستند زیرا بعلت وجود ذرات ریز Al-Ti و اکسیدها و بیدها مقاومت خوبی را در دماهای بالاتر از 600?C نشان می دهد . استحکام در دمای بالا همراه با چگالی کم ، آلیاژهای Al-Ti را قابل رقابت با موادی مانند تیتانیم و آلیاژهای پایه نیکل می کند . ولی انعطاف پذیری کم در دمای اتاق باعث شده استفاده عمومی از آنها محدود شود [28,29] ساختار نانوکریستال می تواند تنها دلیل افزایش همزمان سختی و انعطاف پذیری (ductility) باشد . برای افزایش انعطاف پذیری (duetility) به خوبی استحکام در دمای اتاق برای آلیاژ Al-Ti ما می توانیم ار روش آلیاژسازی مکانیکی برای تهیه ساختار نانوکریستال استفاده کنیم زیرا در این روش اندازه ذرات پودر درحد نانومتر کاهش می یابد . مواد نانوکریستال بعنوان یکی از پربهره ترین مواد در دهه اخیر مطرح شده اند به سبب اینکه آنها خواص مفید و بالقوه ای برای کاربردهای مختلف دارند که وابسته به اندازه بی نهایت ریزدانه ها است [30,32] و مواد بصورت پودر زمانی می توانند یک ماده با ساختار نانوکریستال با سودهی مناسب را تولید کنند . که سایز ذرات آنها در حد نانومتر باشد [33] . در آزمایشات گذشته [34] پودر نانوکریستال آلیاژ Al-Ti بطور موفقیت آمیزی بوسیله آسیاب گلوله ای واکنش دار(RBM) (Reactive ball Milling) در اتمسفر هیدروژن ترکیب شده بود و یک نوع ساختار نانومتری که شامل Al با اندازه ای درحد نانومتر و همچنین ذرات نانومتری TiH2 را به بوجود آورده بود . در ابتدا آسیاب کردن ، TiH2 تشکیل شده و زمان تشکیل ساختار را 1 تا 3 ساعت کمتر کرده است [35]. 1- جزئیات آزمایشات 1-1 آسیاب گلوله ای واکنشی و مشخصات پودر آسیاب شده . پودر آلومینیوم خالص (99.5% , - 325mesh خلوص) و تیتانیم (99.9% , - 325mesh خلوص) با ترکیب شیمیایی Al-5% at Ti باهم ترکیب می شوند . RBM یک آسیاب گلوله ای بزرگ با انرژی زیاد است و دارای ظرفیت 7.81 تحت اتمسفر هیدروژن می باشد شرایط آسیاب کردن بوسیله اثری که بر روی ساختار نانوکریستال آلیاژ Al-Ti دارد تعیین می شود [8] زمان آسیاب کردن و سرعت آسیاب کردن بترتیب 30 ساعت و 250 rpm می باشد وزن نهایی پودر 200gr و نسبت گلوله های آسیاب به پودر 65:1.2wt%? می باشد عامل کنترل کننده فرآیند استریک اسید (CH3 (CH2)16 COOH) می باشد که اضافه می شود . قبل از شارژ کردن محفظه آسیاب با گاز هیدروژن ، محفظه باید بوسیله Rotary Pump خلاء بشود ( درحدود 10-3 torr ) . [36] پودرهای آسیاب شده بعد از طی مرحله آسیاب به 200 mesh می رسند بعد از طی این مراحل آزمایشاتی بوسیله TEM , SEM , XRD بر روی پودر انجام شد و مشاهده شد اندازه دانه ها که بوسیله TEM اندازه گیری شده بود با داده های تئوری از XRD مطابقت داشت . دمای تجزیه TiH2 و تشکیل Al­3 Ti بوسیله نمودار DSC در نرخ حرارت دهی 10-3k/s و درحضور اتمسفر آرگون محاسبه شدند . بعد از عملیات حرارتی تغییرات ریزساختار و اندازه دانه با نتایج بدست آمده از TEM , XRD اختلاف داشت . [26] (Con soli dation Temp) دمای ترکیب شدن : به دمای گفته می شود که در آن دما همه TiH2 تجزیه شده و Al3Ti تشکیل می شود . [26] آنالیز حرارتی در این آزمایش شبیه به آزمایش قبلی [8] که بروی پودری با ترکیب Al-10 wt/Ti که بمدت 50 ساعت در اتمسفر RBM,H2 شده بود است بنابراین دمای واکنش برای این آزمایش 40-50?C کمتر از آزمایش قبلی است. و ریزساختار پودر آسیاب شده در این آزمایش ریزتر از آزمایش قبلی بود . در این مورد آنالیز حرارتی پودری با ترکیب Al-10wt% Ti که در اتمسفر آرگون آلیاژسازی مکانیکی شده است نشان می دهد که AL3Ti بین دمای 260-320?C تشکیل شده است [37] اما این یک آزمایش است زیرا Al3Ti قبل از آنکه TiH2 تجزیه شود تشکیل نشده بود . تشکیل Al3Ti با تأخیر تا دمای 480?C انجام می شود که بعنوان دمای معمولی ترکیب برای آلیاژسازی مکانیکی آلیاژهای پودر Al-Ti مطرح است . تأخیر در تشکیل Al3Ti می تواند از رشد دانه های Al3Ti در حین عملیات حرارتی و گاززدائی قبل از اکستروژن گرم بواسطه زمان کم حرارت دهی جلوگیری کند . شکل 13 عسکهای TEM مربوط به پودری با ترکیب Al-5 at%Ti که در RBM بمدت 30 ساعت آسیاب شده و سپس بمدت 20دقیقه در دمای 500?C عملیات حرارتی شده است را نشان می دهد . سطح عکس نشان دهنده مدل SAD فازهای Al-Ti ,Al و Al2O3 را بدون TiH2 را نشان می دهد اندازه دانه ها نیز در حدود 20nm نگه داشته می شود . برطبق آنالیز DSC دمای مناسب برای ترکیب 500?C است . [26] برای آزمایش ، 4 قطعه برای شرایط متفاوت اکستروژن آماده شده بود . شرایط اکستروژن گرم و مشخصات قطعات اکسترود شده در جدول 2 بیان شده است . فشردگی نسبی همه قطعات99% و بیشتر است . شکل 1+4 عکسهای TEM مربوط به ریزساختار قطعه اکسترود شده را نشان می دهد . قطعه اکسترود شده عمدتا شامل ذرات Al3,Ti,Al که تقریبا سایزی حدود 50nm تا 100nm دارند که وابسته به شرایط اکستروژن است و تصویر TEM آنها در شکلهای 4(c),4(a) نشان داده شده است . ریزساختار قطعه اکسترود شده ترکیبی از Al3Ti,Al که بصورت پودر است اندازه دانه هم در فرآیند گاز زدائی و هم در فرآیند عملیات حرارتی قبل از اکستروژن با کم کردن دما و کوتاه کردن زمان فرآیند افزایش می یابد. [26] اندازه دانه نمونه 4 کمتر از 50nm می باشد این یکی از ریزترین اندازه دانه ها در آلیاژهای Al-Ti است اندازه دانه نمونه های آسیاب شده در RBM تحت H2 که اکستروژن گرم شده اند نسبت به قطعاتی که به روشی آلیاژسازی مکانیکی تحت Ar تهیه شده و سپس اکستروژن گرم شده (که اندازه ای حدود 150-40nm دارند شکل 4(d)) خیلی ریزترند . Al4c3 , Al2o3 بوسیله واکنشهای بین C , O , AL در فرآیندی که عامل کنترل کننده واکنش نیز حضور دارد ایجاد می شود که بصورت ذرات پراکنده وجود دارند . اکسیدهایی که درشکل 4(e) مشخص است به شکل دایره ای با قطر 10nm هستند که در داخل دانه ها مشاهده می شود . کاربیدها همانطور که درشکل 4(f) مشاهده می شود به صورت استوانه ای هستند که معمولا در مرز دانه ها قرار می گیرد .با اینکه Al4c3 , AL2O3 بطور یکنواخت در درون شبکه پراکنده نمی باشند ولی آنها می توانند استحکام اولیه بیشتری در مقایسه با Al3Ti ایجاد کنند زیرا آنها خیلی ریزترند . نتایج تست سختی و ریزسختی (micro hardness) در جدول 2 بیان شده است هم سختی و هم ریزسختی با کاهش اندازه دانه افزایش می یابد . [26] درمورد قطعه شماره 4 اندازه دانه کمتر از 50nm است که بطور فوق العاده ای در مقایسه با دیگر نمونه ها تفاوت دارد این قطعه در قوطی Cu (can) ساخته شده که تأثیر این نوع قوطی (can) درخواص قطعات اکسترود شده بطور واضح مشخص نیست . به همین خاطر جزئیات قطعه شماره 4 در ادامه نیامده است در آزمایشات [38] نشان داده شده بود که ریزسختی (micro hardness) آلیاژ Al-8at% Ti که به روش آلیاژسازی مکانیکی تحت اتمسفر Ar تولید شده و سپس اکسترود شده 160Hv بوده است و همچنین آلیاژی با ترکیب Al-5at% Ti که پودر آن در RBM آسیاب شده و سپس اکسترود شده است 197.5-231.7Hv می باشد و بنابراین حدود 23-45% بالاتر از قطعه ای است که بروش آلیاژسازی مکانیکی (MA) تهیه شده است و این بدین خاطراست که ریزساختار Al همانند AL3Ti درقطعه آسیاب شده در RBM و اکسترود شده نیز درحد نانومتر است .

مشخصات فروشنده

نام و نام خانوادگی : مهدی حیدری

شماره تماس : 09033719795 - 07734251434

ایمیل :info@sellu.ir

سایت :sellu.ir

مشخصات فایل

فرمت : doc

تعداد صفحات : 25

قیمت : برای مشاهده قیمت کلیک کنید

حجم فایل : 24 کیلوبایت

برای خرید و دانلود فایل و گزارش خرابی از لینک های روبرو اقدام کنید...

پرداخت و دانلودگزارش خرابی و شکایت از فایل

تحقیق بررسی نفت و اهمیت آن در 56 صفحه ورد قابل ویرایش

تحقیق بررسی نفت و اهمیت آن
تحقیق بررسی نفت و اهمیت آن - تحقیق بررسی نفت و اهمیت آن در 56 صفحه ورد قابل ویرایش



تحقیق بررسی نفت و اهمیت آن در 56 صفحه ورد قابل ویرایش
مقدمه نفت خام مایعی است که از تعدادی هیدروکربن و مقداری ترکییات گوگردی اکسیژن دار، ازته و مقدار کمی ترکیبات معدنی و فلزات تشکیل شده است . ترکیبات مختلف نفت خام بنا به موقعیت محلی میدان نفتی و زمان تشکیل آن و حتی بنا به ژرفای منبع مـتغیرند . در یک جزوه نفتی همراه نفت خام همواره مقداری گاز ، آب و نمک و شن و ماسه وجود دارد که این مواد بر اساس چگالی روی هم انباشته می گردند . نحوة قرار گرفتن آنها بدین شکل است که در زیر یک لایة غیر قابل نفوذ ابتدا آب و نمک ، سپس نفت خان .و بر روی آن گازها قرار دارند . نفت خام پس از استخراج به واحد بهره برداری انتقال داده شده که در این واحد نفت خام را با عبور از جدا کننده ها و کاهش تدریجی فشار ، از گاز همراه با آن عاری می سازند . سپس در واحد نمک زدایی ، آب و نمک ، شن و ماسة آن را جدا ساخته و در صورت ترش بودن نفت خام ( حاوی گازهای اسیدی مانند ، ، RSH و …. ) آن را در استریپرها [1] با یک گازشیرین تماس داده و را جدا می کند کلیة این اعمال بر ای جلوگیری از خوردگی تجهیزات پالایش می باشد. طراحی پالایشگاه را بر اساس اجزاء تشکیل دهنده نفت خام مورد استفاده صورت می گیرد . در ضمن با افزایش مدت زمان استخراج از یک حوزة نفتی کیفیت نفت تغییر کرده و به طور معمول مقدار گوگود و آن افزایش می یابد . در نتیجه با تغییر خوراک پالایشگاه نیاز است که شرایط عملیاتی تغییر کند که این تغییرات بر اساس نتایج حاصل از ارزیابی نفت خام صورت می گیرد. 2 ـ واحد ارزیابی نفت خام هدف از انجام کلیه آرمایشات در واحد ارزیابی نفت خام ، ارزیابی و تعیین مشخصات نقت خام های ایران و کشورهای همسایه که برای امور صادرات و طراحی پالایشگاهها مورد استفاده قرار می گیرد ، است . از جمله کارهای این واحد ، تقطیر نفت خام و بدست آوردن فرآورده های سبک تا سنگین که به ترتیب حلالها و بنزین و نفت سفید و گازوئیل و روغنها می باشند که مشخصات فیزیکی و شیمیایی و ترمودینامیکی آنها مطابق روشهای استاندارد انجام می شود و همچنین حلالهای نفتی مورد نیاز صنایع در این واحد ساخته می شود. تواناییهای این واحد علاوه بر موارد فوق در خصوص قسمتهای استاندارد به شرح زیر می باشد: 1. تقطیرهای ASTM و IP جهت تهیة برشهای کوتاه و تعیین نقاط جوش و تحت خلاء تا 001/0 میلی باد و تا نفاط جوش حدود 800 . 2. تعیین دانسیته ، وزن مخصوص ، گوگرد ، اسیدیته و گرانروی مایعات ، گازها و جامدات. 3. تعیین مقدار هیدروکربنتهای آروماتیکی ، نفتینکی، الفینی و پارافینی ( نرمال رایزو) 4. تعیین وزن مولکولی ،‌ فشار بخار ، باقیمانده ، کربن ، مقدار واکس و نقطة ذوب آن و خاکستر در نفت خام و فرآوردها 5. تعیین مقدار نمک، آب و رسوبات در نفت خام . 6. تعیین اندازه ذرات جامد معلق در مایعات و غلظت آنها. 7. تعیین ضریب رسانش ، PH‌ ، ارزش حرارتی ، مقاومت اکسیداسیون مایعات . 8. تصفیه روغن های خام و تعیین پارامترهای کنترل کیفیت بخصوص اندیس گرانروی ، قسمت رنگ فرآورده ها و نمرة برومین . 9. تعیین عددستان ، اندیش دیزل ، نقطة آنیلین ، نقطة آتش گیری ،‌ نقطة اشتعال ، نقطة ابری شدن ، نقطه انجماد ، نقطة ریزش و دمای بسته شدن فیلتر گازوئیل بر روی سوختهای نفت سفید و دیزل. 10. تست نوار خوردگی مس ، نقره ، خوردگی فلزات بر روی سوختها و ضدیخ. معمولاً هر پالایشگاه دارای یک آزمایشگاه کنترل کیفیت است که در آنها آزمایشهایی بر روی فرآورده های مختلف میانی یا نهایی به دو منظور انجام می شود: تشخیص صحت کار واحدهای تولید به طور سریع اطمینان از مطابقت فرآورده های نهایی با استانداردهای مربرطه برای انجام این آزمایشها ، دستگاهها و روشهای استاندارد بکار می رود . بطوریکه نتایج به راحتی قابل تکرار و مقایسه باشند . عمدتاً از روشهای ASTM و در مواردی IP ، BP ، DIM و …. استفاده می شود. در این گزارش به برخی از مهمترین آزمایشها اشاره می شود. چگالی ( دانسیته )‌ دانسیته هیدروکربن ها همیشه کمتر از یک است و با افزایش تعداد کربن ، این مقدار در یک سری همولوگ افزایش می یابد . در صورتی که سیستم ها به ترتیب هیدورکربن های اشباع شدة غیر حلقوی ـ اشباع شده حلقوی ـ و آروماتیک باشد . به ازاء تعداد معین کربن دانسیته نیز افزایش می یابد. مقایسه دانسیته هیدروکربتهای مختلف در درجه حرارت ثابت دانسیته نفت که مخلوطی از هیدروکربن ها ست بستگی به مواد سازنده آن دارد و به همین لحاظ است که نفت کشورهای مختلف دارای دانسته های متفاوت است . . مثلاً دانسیته نفت آمریکا . 87/0 ـ 800/0 ، نفت ایران در 60 ، 836/0 و نفت و رسید 900/0 ـ 850/0 می باشد. معمولاً دانسیته در دمای 60 اندازه گیری می شود . برای اندازه گیری SG معمولاً از هیدرومتر و پکنومتر و یا دانسیته مترهای اتوماتیک استفاده می شود. برای اندازه گیری SG معمولاً از هیدرومتر پیکنومتر و یا دانسیته مترهای اتوماتیک استفاده می شود . برای برش های نفتی چگالی به شکل کمیت API نیز بیان می شود : API بوسیله انستیتو نفت آمریکا پیشنهاد شده است و در کشورهای آمریکایی مقدار دانسیته بر حسب آن داده می شود. روش ASTM این آزمایش برای اندازه گیر یدانسیته تقطیبر شدههای نفتی در فاصلة دمایی 15 نت 35 درجه سانتیگراد مناسب می باشد . نمونة مورد استفاده باید مایع با فشار بخار کمتر از mmHg 600 و دیسکوزیته کمتر از 15000 در دمای مورد آزمایش باشد . در ضمن نمونه نباید خیلی تیره باشد . بنابراین این نمونه های نفت خام برای این آزمایش مناسب نیستند . این دستگاه دانسیته را با واحد نشان می دهد. شرح آزمایش پس از کالیبره کردن دستگاه توسط آب مقطر و هوا و تنظیم دمای 56/15‌، لوله خرطومی شکل داخل دستگاه با با بهترین شستشو می دهیم . و توسط پمپ هوا داخل آن را خشک می کنیم . لامپ دستگاه را روشن نموده و توسط سرنگ، نمونه را داخل لوله تزریق می کنیم . این عمل باید به گونه ای صورت گیرد که هیچ گونه حبابی داخل لوله تشکیل نشود . زیرا حبابهای هوا بر روی دانسیته تأثیر گذاشته و ایجاد خطا می کند . سپس لامپ دستگاه را خاموش می کنیم ( نور نیز در انجام آزمایش خطا ایجاد می کند .) بر اساس تغییر فرکانس موج وارد شده به نمونه نسبت به حالت مبنا ، تعداد دانسیته اندازه گیری می شود . هنگامی که این مقدار به یک حد ثابتی رسید .عدد نشان داده شده را یادداشت می کنیم . روش این تست برای اندازه گیری نقطة دود نفت سفید ، از روی ارتفاع شعله حاصل از سوختن آن قبل از ایجاد دوده ، بکار می رود. شرح آزمایش فتیلة استاندارد این روش را در نفت سفید به خوبی تر می کنیم تا کاملاً ‎آغشته به آن گردد . سپس فتیله را از جایگاه فلزی ( لوله ای شکل ) مخصوص دستگاه عبور می دهیم . سر فتیله را به شکل نیم کره در آورده و به آن شعله می دهیم . توسط پیچ تنظیم شعله، می دهیم . توسط پیچ تنظیم شعله ، و ارتفاع شعله را افزایش می دهیم . آخرین ارتفاعی از شعله که دود از روی دودکش دستگاه بر نمی خیزد ، را به عنوان نقطه‌ دود گزارش می کنیم . این ارتفاع را از روی صفحة درجة بندی شده موجود درشت شعله می خوانیم . نقطه ریزش هر گاه برش نقتی بدون تکان دادن سرد گردد به درجه حرارتی که در آن میکرو کریستال ها تشکیل یا کدروتی در برش مشاهده شود ، « نقطه کدری » گفته می شود . اگر عمل سرد نمودن ادامه یا به زمانی می رسد که اگر لوله آزمون را به حالت افقی قرار دهیم برش دیگر در آن جابجا نشده و نمی ریزد ( نقطه انجماد ). حال اگر لوله آزمون را به ملایمت گرم نمائیم لحظه ای می رسد که برش در لوله سیالیت خود را باز می یابد . درجه حرارت مربوط به این تغییر حالت : نقطه ریزش گفته می شود ، درجه حرارت نقطه جرای شدن ( ریزش ) معمولاً چند درجه بالاتر از درجه حرارت نقطه انجماد برش است دانایی این نقطه کمک به شناسایی نسبت درصد هیدروکربنهای با نقطه انجماد بالا را در برش مربوطه می نماید . با اطلاع از مقادیر دو نقطه فوق ، حدود استفاده برش ها ( بخصوص هنگام پمپاژ زمستان ) تعیین می گردد. روش ASTM D97 این تست برای تعیین نقطة ریزش ، بر روی کلیة محصولات نفتی قابل اجرا است . با این روش پایین ترین دمایی که محصول جامد نشده و قابل استفاه است را تخمین می زنیم . یکی دیگر از کاربردهای این روش ، یافتن میزان قابلیت جریان نه مانده های نفتی در دماهای خاص می باشد. شرح آزمایش ابتدا نمونه رادر یک بشر ریخته و در یک حمام تا دمای 45 گرم می کنیم تا تمام اجزای سنگین واکسی و … ذوب شده و نمونه هموژن شود . سپس داخل آن یک دماسنج گذاشته و در حمام آب سرد ( حدود 4 و 2- ) قرار می دهیم . تا وقتی روی آن ببندد و سخت شود و حالت سیالیت خود را از دست بدهد . این دما را از روی دماسنج می خوانیم و 3 به آن می افزاییم و به عنوان نقطه ریزش این دما را گزارش می کنیم. نقطه انجماد تعیین نقطة جوش فرآورده های نفتی بسته به نوع کاربرد آنها مهم می باشد . به عنوان مثال در مورد بنزین هواپیما ، نقطة انجماد نباید بالاتر از 60- باشد زیرا در فضای بالای اتمسفر که درجه حرارت به این حدود می رسد حتی تشکیل بلورهای خیلی ریز می تواند موجب بسته شدن راه عبور بنزین از فیلترها گردد و اختلالاتی بوجود آورد . لذا بنزین هواپیما باید عاری از هیدرو کربنهایی باشد که قبل از این درجه حرارت متبلور می گردند و به همین علت مقدار بنزین در بنزین هواپیما محدود است. روش هدف بدست آوردن نقطة انجماد بنزین هواپیما و سوخت جت مانند نفت سفید که حاوی مقدار کمی آب است می باشد. روش آزمایش مقدار cc25 از نمونه را داخل لوله آزمایش دو جداره مخصوص ریخته و همزن برونزی فنر مانند را که توسط یک اهرم حرکت بالا پایین دارد ، داخل آن قرار می دهیم . دماسنجی نیز در ان می گذاریم . سپس در جدارة خارجی لوله آزمایش ،‌ هوا مایع می ریزیم و جهت جلوگیری از تأخیر در انجماد مرتباً نمونه را بوسیله همزن برونزی هم می زنیم . ابتدا یک حالت ابری در نمونه ایجاد می شود که به آن cloud point گوییم . ولی دمایی که اولین کریستال بر روی همزن بوجود می آید را یادداشت می کنیم . سپس نمونه یخ زده را از ظرف هوا مایع خارج کرده و می گذاریم تا به آرامی گرم شود .درجه حرارتی که آخرین ذره نور تشکیل شده بر روی همزن ناپدید گردید را نیز یادداشت می کنیم. این دو دما را مقایسه می کنیم اگر به اندازه 5/0 یا کمتر با هم اختلاف داشته باشند ، درجه حرارتی را که اولی یادداشت کردیم را به عنوان نقطة انجماد گزارش می کنیم . اگر این اختلاف بیشتر از 5/0 باشد باید آزمایش را دوباره تکرار کنیم. ترکیبات گوگرد دار مقدمه توزیع گوگرد در قسمتهای مختلف نفت خام اول بار توسط Mabery در سال 1891 مورد مطالعه قرار گرفت . به طور کلی درصد گوگرد با افزایش نقطة جوش بالا می رود یعنی قسمتهای با نقطة جوش بالاتر دارای نسبت درصد بیشتری گوگرد است . نفت ثابت شده است که در موقع تجزیه مولکولها در عمل تقطیر ( که معمولاً اتفاق می افتد ) اجزاء با درون مولولی متوط بیش از قسمت سنگین تر گوگرد را نگه می دارد . این موضوع مخلف توزیع عادی گوگرد در نفت خام است . معمولاً بیش از 90 % گوگرد در قسمت نفت گاز و باقیمانده جمع شده است . نسبت درصد گوگرد زیاد در اکثر فرآورده های نفتی مضر است و یا تبدیل آنها به مواد بی ضرر ، قسمت مهم کار پالایشگاه را تشکیل می دهد . وجود ترکیبات گوگردی در بنزین به علت خورندگی که در قسمتهای موتر ایجاد می نماید مضر تشخیص داده شده و مخصوصاً در شرایط زمستانی به علت جمع شدن محلول در آب که در نتیجة احتراق بدست می آید در محوطة میل لنگ موجب خورندگی بسیار می شود . به علاوه مرکایتانهای محلول در مواد نفتی مستقیماً در مجاورت و موجب خورندگی مس و برنج می شود. مقدمه آسفالتین هیدروکربن های بسیار سنگین چند حلقه ای ـ تشکیل از حلقه های آروماتیکی و نفتنیکی ـ هستند که حاوی مقداری گوگرد ، نیتروژن ، اکسیژن و فلزاتی چون سدیم ، کلسیم ، آهن ، نیکل و وانادیم می باشند. آسفالتین ها سیاه رنگ و شکننده هستند و نسبت کربن و هیدروژن آنها بالاست ( حدود %6 ـ 5 وزن مولکولی آنها را هیدروژن تشکیل می دهد در حالی که در دیگر هیدروکربن ها حدود 14% وزن آنها معمولاً از هیدروژن است . چون نمی توان این مواد را از طریق تقطیر از سایر هیدروکربن ها جدا کرد ، بنابراین از روش استخراج با حلال استفاده می شود . آسفالتین ها در حلالهای آروماتیکی به خوبی حل می شوند ولی در حلالهای آلیفاتیکی حل نمی شوند بنابراین برای جداسازی آنها می توان از پردیان تاهپتان استفاده کرد . البته هر چه وزن مولکولی حلال کمتر باشد حلالیت آسفالین در آن کمتر است . به طوریکه حلالیت آسفالتین در اتان از همه کمتر است ولی از آنجا که در برشهای روغنی به غیر از آسفالتین مواد دیگری نیر رسوب می کنند ، اتان ماده مناسبی برای جداسازی آسفالتین از برشهای روغنی نیست . در صنعت از پروپان استفاده می شود و در آزمایشگاه از پنتان و هگزان و هپتان . در ضمن آسفالتین ها در تولوئن داغ و بترن نیز محلولند. رابطة میان قدرت رسوب دهندگی آسفالتین و جرم مولکولی حلالهای هیدروکربنی روش IP این تست برای گازوئیل ، سوخت دیزل ، ته مانده های سوختهای نفتی ، نفتیهای روغنی و قیر که به دمای 260 رسیده اند ، می باشد . در این روش از حلال هپتان استفاده می شود . شرح آزمایش ابتدا تقطیر نفت خام تا دمای 260 صورت می گیرد . سپس مقدار باقی مانده جمع آوری شده و وزن می شوند . زیرا مرحلة اول تخمین میزان آسفالتین موجود در نمونه و یا دانستن مقدار ته مانده های نفت برای تخمین حجم تخمین حجم فلاسک و مقدار هپتان لازم از روی جداول داده شده می باشد . اگر مقدار آسفالتین تخمینی در نمونه بیشتر از 25/0 باشد حداقل ml 25 هپتان لازم است . هر چه مقدار آسفالتین کمتر باشد حجم هپتان لازم کمتر است . به طوریکه به ازای هر 1 گرم از نمونه ml 30 هپتان لازم است . پس از افزودن هپتان نمونه را به مدت 60 دقیقه می جوشانیم سپس سرد کرده و به مدت 150 ـ 90 دقیقه در یک فضای تاریک نگه می داریم . سپس مخلوط حاصله را فیلتر می کنیم . به جز آسفالتین بقیة اجزاء نمونه در هپتان حل می شوند و از فیلتر عبور می کنند . و این بار آن را در مجاورت هپتان ( بخارات هپتان ) قرار می دهیم تا جدا سازی کاملتری صورت گیرد . وقتی حلال خروجی از یک بی رنگ شد مطمئن می شویم جداسازی کاملاً انجام گرفته است . سپس به جای هپتان این بار از تولوئین داغ استفاده می کنیم . تولوئین آسفالتینها را می شوید . در ظرفی آسفالتینها را می شوید . در ظرفی آسفالتینهای شسته شده با تولوئن را جمع می کنیم . این محلول را به قدری حرارت می دهیم تا تمام تولوئین تبخیر شده و تنها آسفالتین بماند .

مشخصات فروشنده

نام و نام خانوادگی : مهدی حیدری

شماره تماس : 09033719795 - 07734251434

ایمیل :info@sellu.ir

سایت :sellu.ir

مشخصات فایل

فرمت : doc

تعداد صفحات : 56

قیمت : برای مشاهده قیمت کلیک کنید

حجم فایل : 56 کیلوبایت

برای خرید و دانلود فایل و گزارش خرابی از لینک های روبرو اقدام کنید...

پرداخت و دانلودگزارش خرابی و شکایت از فایل